
RD-R172 466 DESIGN OF R DRTA DICTIONARY EDITOR IN R DISTRIBUTED V/2
SOFTUARE DEVELOPMENT ENYIRONNENT(U) IR FORCE INST OF
TECH NRIGHT-PATTERSON RFD OH SCHOOL OF ENGI.

UNCLRSSIFIED J W FOLEY JUN 86 RFIT/GCS/ENO/86J-5 F/G 9/2llEEEEEEEEllI
lllhllllhllllu
Ellllllllllll
IIIEIIEIIIIII
lEEEE~llll~lEE
lfllflflfllllllll

-llllllll



125 L.6



m IDESIGN OF A DATA DICTIONARY

EDITOR IN A DISTRIBUTED SOFTWARE
DEVELOPMENT ENVIRONMENT

THESIS

Jeffrey W. Foley, B.S.
F EDCaptain, USA

~AFIT/GCS/ENG/86J-5

00

== "r~~~nv do-ii.t hu- bein tn p ,,'d '

€..OCT 2 1986
DEPARTMENT OF THE AIR FORCE

q AIR UNIVERSITY. A'
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Ca80 0an 203



l6

I' -AFIT/G-CS/ENG/36J-5

DESIGN OF A DATA DICTIONARY
EDITOR IN A DISTRIBUTED SOFTWARE

DEVELOPMENT ENVIRONMENT

THESIS

Jeffrey W. Foley, B.S.
Captain, USA

AFIT/GCS/ENG/86J-5

Approved for public release; distribution unlimited

a

'U

• I . . .. . -- . . . . . . . . . . . . . U -.. .. U U * o . U -, -



AFIT/GCS/ENG/86J-5

DESIGN OF A DATA DICTIONARY EDITOR IN A

DISTRIBUTED SOFTWARE DEVELOPMENT ENVIRONMENT

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

j

Jeffrey W. Foley, B.S.

Captain, USA

June 1986

Approved for public release; distribution unlimited

::-.:.1

.: .-._. -. -, .-.. ,.. .. ,_:... .. ....... , ..... .o .. .. .... ., .. ..., - , -,.-.- -. .. .. ..



Preface

Data dictionaries enjoy considerable attention in

software documentation requirements in the AFIT research

environment. Previous research efforts have provided some

insight into the requirements of data dictionary systems but

have focused on single computer environments. The purpose

of this study was to expand the data dictionary system to

the distributed development environment. The key to this

expansion was the design and development of a special data

dictionary editor that creates and updates definitions at a

workstation. Definitions are then transfered to and from

the central database as needed for project development.

In preparing this thesis I have received considerable

help and support from others. First, I am very grateful to

my thesis advisor Dr. Thomas C. Hartrum for his guidance and

support throughout the entire effort. I also wish to thank

my committee members, Dr. Gary B. Lamont and MAJ Duard S.

Woffinden, for their valued assistance. Two classmates were

particularly helpful to me: CAPT Thomas Zuzack in educating

me on the workings of the Z-100 microcomputer, and CAPT

Charles Hamberger for his enhancements of the previous

database interface software. Finally, I wish to thank my

dear wife Beth for her continuous, loving support throughout

our entire graduate school experience.

Jeffrey W. Foley

ii



Table of Contents

Page

Preface ......... ....................... ii

List of Figures ....... ................... vi

Abstract ......... ....................... vii

I. Introduction ....... .................. 1

Background ...... ................. 1
Problem Statement ........ .............. 2
Scope ......... .. .................... 3
Assumptions ......... ................. 4
General Approach . ... . . . . . . . . . . 4
Sequence of Presentation ...... .......... 5

II. Review of the Literature ....... ............ 6

Data Dictionary Systems ...... ........... 7
Human Interface Issues ... ........... 10
Distributed Development Environments ... 15

Problems Associated With Distributed
Interaction .... .............. 16

Framework for a Distributed Database
Interface ..... ............... . 21

Summary ....... ................... 25

[TI. Data Dictionary System Requirements ...... 26

Overall System Analysis ... ........... . 26
Data Dictionary Editor Requirements ..... 40
Central Computer Database Interface ..... 42

Database Interface Facilities ...... 42
Security of the Database ........ ... 43

Summary ....... ................... 44

ii



Page

IV. Data Dictionary System Design .. ......... 45

Data Dictionary Editor Design ......... 45
User-Machine Interface .. .......... . 46
Screen Display .... .............. 52
Data Structures .... ............. 55
Windowing Scheme .... ............. 59
Data File Input and Output ......... 63
Editor Commands ..... .. ............. 66
Keyboard Layout .... ............. 67
Error Handling .... .............. 67

Communications Interface .......... 69
Database Interface Design .. .......... 70
Summary ...... ..................... 72

V. Implementation and Test ... ............ 73

Portability of the Code ... ........... . 73
Generic Editor Implementation Issues . . .. 75
Operation of the Tool ... ............ 76
Testing .......... ................... 78
Summary ....... ................... 31

VI. Evaluation of the Data Dictionary Editor . . . . 82

Measuring User Satisfaction .. ......... .. 82
Evaluation of the Data Dictionary Editor . 87
Conclusions ...... ................. 91

VII. Conclusion and Recommendations .. ......... . 93

Conclusions .................. 93
Recommendations for Further Study ...... . 96

Appendix A: Evaluation of an Automated/Interactive
Software Engineering Tool to
Generate Data Dictionaries ....... .. A-I

Appendix B: Data Dictionary Editor Users' Guide . . B-I

Appendix C: Evaluation Questionnaire .. ........ C-I

Appendix D: Evaluation Handout ... ........... D-I

Appendix E: Editor SADT Diagrams ............. E-1

Appendix F: Design Structure Charts for the Editor. F-I

"i

iv



Page

Appendix G: Summary Paper ..... ..............

Bibliography ......... ..................... BIB-I

Vita ............ ......................... ITA-I

The following additional thesis volumes are maintained at
the Air Force Institute of Technology, Department of
Electrical and Computer Engineering:

Volume II: Workstation Editor Code and Data Dictionary

Volume III: Database Interface Code

v



W' W t % 

List of Figures

Figure Page

1. Framework for a Distributed Database
Interface ..... ................. 22

2. The Distributed Development Environment . . . . 27

3. Data Dictionary Format for Structure
Chart - Process .... .............. 30

4. Data Dictionary Format for Structure
Chart - Parameter ... ............. 31

5. Typical Structure Chart ... ............ 32

5. Example of Parameter Passing .. ......... 33

7. Third Normal Form Relations for a Design
Structure Chart Process .. .......... 36

8. Third Normal Form Relations for a Design
Structure Chart Parameter .. ......... 37

9. Opening Menu on the Editor .... .......... 47

10. Menu #2 for Create .............. 48

11. Menu #3 for Create .... .............. 49

12. Sample Screen Display ... ............. . 53

13. Linked Structure Used in the Editor ........ 57

14. Screen Editor "Windowing Scheme" ....... . 60

15. Format of Flat File .... .............. 65

16. Sample Survey Question . . . . . . . . . . . . 64

17. Score Boundaries for Normalized User
Satisfaction ..... ................ 66

18. Normalized Values for Overall User
Satisfaction ..... ................ 88

19. Mean Scores for Each Factor ..... .......... 89

vi



Abstract

" The project involved the design and implementation of a

data dictionary system in a distributed development

environment. The distributed environment consists of a

central computer that hosts a database management system, a

conglomerate of workstations, and the communications links

between the workstations and central computer.

rhe emphasis of the research was placed on the design

of a user-friendly data dictionary editor that was

implemented on a prototype workstation. Data dictionary

definitions are created and updated at the workstation and

transfered between the workstation and central computer

database.

Background information is provided on data dictionary

systems, aspects of human-computer interfaces, and

distributed environment interface issues. The design and

development of the special editor and the database interface

software are described in detail/ -

Evaluation of the special editor was performed by a

subset of the target user group. This evaluation was based

on a tool designed to measure user satisfaction. The tool

is described and the results of the evaluation are provided.

-.'.- vii

',

,'. . . , -.• .. . - - -. . • ... ,.. . * • . ". S- .- U .- . .p -. - . - '.~ " *--- . " 5' . .. . .-. . .'. . .



DESIGN OF A DATA DICTIONARY
EDITOR IN A DISTRIBUTED SOFTWARE

DEVELOPMENT ENVIRONMENT

I. Introduction

Background

The Department of Electrical and Computer Engineering

at the Air Force Institute of Technology (AFIT) sponsors a

large amount of research in the area of software

development. In conjunction with this research, the

department has established documentation standards that

include data dictionaries to support the requirements,

design, and coding phases of the software lifecycle (37).

Originally these data dictionaries were created and managed

by hand. As the dictionaries grew in size, the effective

control and management of their contents became increasingly

difficult (16). Because the characteristics of data

dictionary systems are so similar to those of database

management systems (23:10), the task to automate the data

dictionary system was established.

Several efforts at AFIT led to the development of a

limited data dictionary system implemented on a Vax-11/7bO

computer under the Unix operating system, and using the

Berkeley version of the relational database management

system INGRES. Thomas (39) consolidated these efforts to

produce a limited working system, which was later extended

'5



and improved by Hamberger (1b).

There are several deficiencies with the current

implementation of the software, the most critical being the

lengthy response time experienced while using the system (a

complete review, by this author, of the current

implementation can be found in Appendix A).

Initial performance evaluations of the system indicated

that the lengthy response times could oe attributed to three

factors (16, Appendix A). The first factor, believed to be

the biggest contributor, was the time required to edit data

dictionary definitions. The time required to interact with

the database management system was the second factor. The

third factor was the time attributed to the system load, or

number of users on the computer.

Because data dictionary systems can be so valuable in

documenting software development projects (22) there was a

requirement for such a system to support these research

efforts.

Problem

Requirements for a complete data dictionary system for

the software development lifecycle needed to be reviewed and

further developed at AFIT. The existing documentation

requirements and the limited implementation of Thomas' data

dictionary generator provided a starting point. The overall

objective of this thesis research was to expand and enhance

the current data dictionary system to support a distributed

2

-l



-evelopment environment. Inherent in this objective was tne

evaluation cf the current system and the goal to design and

implement a user-friendly interface on a microcomputer

workstation that would generate data dictionary definitions

that could be transferred to and from a central database.

Subsequent interface software was also required at other

interface locations in this distributed development

environment.

Scope

This research effort was limited to the development of

a data dictionary system for use at AFIT in support of

software development sponsored by the Department of

Electrical and Computer Engineering. It was implemented on

the Vax-11/76O computer, using the Unix operating system,

with the prototype microcomputer workstation being the

Zenith Z-100 using the MS-DOS operating system.

Interface software was designed and implemented on the

microcomputer workstation for the purpose of editing data

dictionary definitions, and on the main computer for

interfacing with the database. Current available

communication software packages were used for the transfer

of text files between the workstation and main computer.

Efforts were made to keep the code as generic as possible,

especially at the microcomputer level, to facilitate the

portability of the software to other workstations.

_A-|



Assumptions

Thorough discussions on the software lifecycle and the

graphical representations that support various phases of the

lifecycle were not included in this thesis. It is assumed

that the reader has a basic knowledge of these subjects, or

has the resources available from which to obtain the

knowledge. .

The relational database management system INGRES is

assumed to operate and perform according to specifications

and would provide all the necessary requirements for a

database.

The current edition of the standards and guidelines

published by the Electrical and Computer Engineering

department (37) are assumed to represent a valid subset of

documentation requirements for software development.

General Approach

Initial research focused on data dictionary systems:

their purpose, their information content, and their design

considerations. Researching the issues of human-computer

interfaces and distributed development environments

followed. Together, the results of these investigations

provided a foundation from which to analyze and evaluate the

current implementation of the data dictionary system

employed in the AFIT software development research

environment. Based on the results of this evaluation, the

design of upgrades to the system to operate in a distributed

.4

- S °



environment were developed. Upon completion of the

implementation effort, the new portions of the system were

presented to a subset of the target user group for

evaluation.

Sequence of Presentation

This thesis consists of six sections. A review of

current literature on data dictionary systems,

human-computer interface issues, and distributed development

4environments is presented in Chapter II. The data

-dictionary system requirements are provided in Chapter III,

with the design of the data dictionary system following in

Chapter IV. Chapter V discusses the implementation and

testing of the software. The results of the evaluation

performed on the software are presented in Chapter VI.

Conclusions and recommendations for further study are

discussed in the final chapter.

1 - 4 ,W5



, III. Review of the Literature

A firm understanding of a data dictionary's purpose,

its design methodology and its implementation aspects

peculiar to the target environment is required. To this end

a search of the literature was conducted, the results of

which are described in the first section of this chapter.

User-friendly interfaces was also a key subject that

pertained to this thesis, particularly the proposed editor

for the workstation. Consequently, it was imperative to

search the literature for an understanding of how

user-friendly is defined and how user-friendly systems are

designed for applications similar to this thesis. The

second section of this chapter highlights the results of

this search.

Distributed development environments provide a more

diverse and flexible atmosphere for project development but

their design and implementation requires considerable more

time and resources than single computer environments. The

issues associated with distributed environments required

identification to gain an understanding and appreciation for

the complexities involved, and to determine the reasonable

objectives that could be achieved within the scope of this

thesis. The results of this investigation are discussed in

the third section of this chapter.



Data Dictionary Systems

Data dictionary systems (DDS) nave experienced a

growing degree of usage throughout the dataprocessing field.

Data is a corporate resource, similar to personnel, money,

and raw materials, that, until the late 1970's, was never

managed like a corporate resource (23:2). Because of its

great tendencies to be erroneous, unavailable, and

out-of-uate, this data resource had to be carefully managed

and controlled. Data dictionary systems provide a facility

that supports this objective (22).

The importance of DDS becomes apparent when it is

realized how their information is used. Potential users of

the information system must know the names and meanings of

the information to exercise the system effectively.

Programmers and system administrators must know the

characteristics of the data to perform their duties

effectively. System designers and modifiers must know the

naming conventions employed and the structure of tne data to

perform their duties effectively (22). The data dictionary

is, then, the central source for this information.

It is an attempt to capture all definitions of data
within an enterprise for the purpose of controlling how
data is used and created and to improve the
documentation of the total collection of data on which
an enterprise depends (22:1-1).

Data dictionary systems can be considered information

systems in their own right (22:1-2). An information system

essentially consists of four elements:

*7



1. A dataoase containing the information required by
the information system.

2. A processing system which interacts with the
database and satisfies tne functional requirements of
the system.

3. The users of the system, together with all the
procedures explicit and implicit, for the system.

4. The hardware/software environment required to
perform tne above (22:1-3).

T.n the AFIT environment, the database is stored using

.1 the database management system INGRES, while the processing

system consists of the previous software and the software

generated as a result of this thesis. The users are the

students at AFIT pursuing a masters degree in computer

engineering or computer systems. The hardware is provided

by AFIT and the software is provided as just stated.

The effectiveness of a DDS depends on the degree of

commitment by the organization. If implemented and managed

successfully, it will ensure correctness and consistency of

the data and will provide an invaluable asset in managing

changes within the current system. Lefkovitz outlined a

. number of benefits derived from the use of a DDS:

~" 1. DDS reduces unintentional redundancies in data.
Redundancies waste storage space and create data update
problems. It can also document intentional
redundancies where necessary.

2. Systems development costs and time can be reduced
by ensuring consistency among the data, and eliminating
potential misunderstandings of the data definitions.

3. System maintainability is enhanced through complete
documentation of the system. Communication between the
users and maintenance programmers is improved.

°;8

" * 5' . . ... . .'" . . - , . - .. " . . . , . . '. ". . ' ' . . . . '. . , ". . . . -. . .. . - -



4. DDS can reduce the impact of changes to the system
by aiding in identifying all locations where changes or
modifications are affected.

5. DDS can establish and enforce standards of
definitions and usages of data.

6. The creation of a database provides an efficient
location to store information and make it available to
all necessary personnel. This aids in communicating
concise information and reduces the potential of
semantic misunderstandings.

7. A properly implemented and well-managed DDS

provides a system trusted by all users (22:1-8 thru
1-11).

A DDS provides a useful tool in supporting the

documentation of a large software system. "Documentation on

large software systems is usually poor, outdated,

incomplete, inaccurate...sometimes nonexistent" (23: 49).

This is generally the case since documentation is

traditionally the last task to be completed. A data

dictionary generator can aid immensely in providing a

timely, complete, and accurate documentation package for any

system.

Professor Edgar Sibley, of the University of Maryland,

summarizes his strong beliefs on the importance of data

dictionary system:

1. Anyone who designs and implements an information
system, whether it is data based or not, should use a
dictionary system.. .Human memory is not enough.

2. It is essentially impossible to exert management
control over the design, implementation, and use of
large information systems without some automated means.
Dictionary systems are the best available commercial
aid to these important phases of the system lifecycle
(22).

N9

. . . ,.".";*-",'.".r . . . ."."-",.,-"-. ... ,. '. ' ,-,,.'-.-'',.*, .*'d ., - , .. -. ... , , . ,. - -. o, .- , .. , ..



For a data dictionary system tc be useful it must be

easy to use. Information must be easy to input and extract

from the system in a usable form. This requires an

effectively designed interface between the user and the

computer, more commonly known as the human-computer

interface.

Human-Computer Interfaces

Human-computer interfaces have been the subje-t of

considerable research. Twenty-five years ago computer

systems were designed for the technician. Today, such is .A

not the case. According to James Martin:

... man must become the prime focus of system design.
The computer is there to serve him, to obtain
information for him, and to help him do his job. The A

ease with which he communicates with it will determine
the extent to which he uses it (27:3).

How effectively an individual can use a computer is

based on how that individual was trained to use it and how
A.

effectively the computer was designed to work with the

individual. These characteristics must be balanced, in a

sense, to provide a good working environment. For example,

an individual with little or no experience with computers

must depend on a well designed interface for the system to

provide a useful service. This is further exemplified by

Department of the Army sponsored research (10:2-2) which

resulted in the following observations:

1. If people do not like the system it will not work.

2. Personnel with negative attitudes commit more

10



errors and take longer to learn a systemn than those

with neutral or positive attitudes.

The concept of "user-friendly" denotes a variety of

meanings depending on the source. The American Heritage

Dictionary defines friendly as "...not antagonistic"

(38:527). Crenshaw states that friendly environments

reinforce the fundamental human needs psychologists long ago

identified. These include:

1. Need to have our expectations met.

2. Need for clear information.

3. Need to succeed.

4. Need for a right to fail (without extreme
repercussion).

5. Need for individuality (6:530).

The "ease-of-use" concept is often discussed with

user-friendliness and provides a more measurable aspect of

interfaces (13, 24). "Ease-of-use refers to the physical

and mental workload necessary to first learn and then use an

interface" (24:246). Lindquist discusses usability of an

interface in terms of efficiency where the number of

keystrokes, commands, and time can be used for evaluation.

Ease-of-use has also been defined as the time required to

reach a designated level of efficiency, errors per unit time

(or number of operations), and the user's attitude toward

the system (10:2-3).

User-friendly systems have been characterized by an

almost infinite number of other qualities, such as providing

Es ..



graceful recovery from errors, displaying colorful and

stimulating screens of information, reducing

user-defensiveness, anticipating the user's perceptions,

keeping the user motivated, and providing on-line help

facilities (10, 18, 27). Despite the elusive definitions

that these terms have, they still provide helpful guidance

to interface designers. Designing an interface that meets

these objectives is not easy, and, in fact, some claim has

yet to be done (6, 13). "Friendliness must be actively

sought, planned for, and designed in. Even when it is

actively sought there is no guarantee that it will be found"

(6:527).

In his master's thesis Interactive Environment for a

Computer-Aided Design System (44) CPT D. S. Woffinden

analyzed the criteria, by a variety of authors, for a

user-friendly interface. He found that the majority of

design guidelines were similar in many respects, yet each

set of criteria alone fell short of providing complete

guidance for the design of an entire interactive system for

computer aided design applications (44:17-19). Designing

user-friendly interface software is not an exact science as

speed and efficiency tradeoffs abound with any design

consideration. By understanding Woffinden's principles the

designer will be better prepared to produce the Oest product

for the application. An applicable subset of Woffinden's

design principles (those that impact upon data dictionary

12



1 1 7 7

systems) are identified oelow and include brief descriptions

of each wnere appropriate.

1. Determine the Purpose of the System. The

purpose of the system must be known to fully understand what

the system is expected to do.

2. Know the User. The target user group may have

a dramatic impact on how the system is designed. Their

level of knowledge on computers and their desires of the

system will dictate many aspects of the design.

3. Identify Resources. The resources (primarily

hardware and software) available for the research must be

known to identify the capabilities and limitations of the

targeted environment.

4. Human Factors. Human factors are divided into

two categories: physical and psychological. Those aspects

of the physical environment, such as the working conditions,

that can and cannot be changed must be known so that the

interface could be designed accordingly. Psychological

factors also will affect the design. Five keys areas in the

psychological category are:

a. Keep the user motivated -- do not frustratc or bore
him.

b. Break the lengthy input process into parts to
permit the user to achieve "psychological closure."
This provides positive feedback to the user through a
feeling of accomplishment and success (27:324-6).

c. Minimize the memorization required by the user.

d. Provide visually pleasing displays on the screen.
This includes minimizing the scrolling and other

13



distracting movements of text, the highlighting of
instructions to the user, and the making effective use
of margins and white space.

e. Keep response time to a minimum. Display status
messages to keep the user constantly informed of what
is happening inside the machine.

5. Design for Evolution. The system must be

designed with the ability to accommodate future changes.

6. Optimize Training and Accommodate Levels of

Experience. kll users must be able to perform meaningful

work without assistance. Whether users' manuals or on-line

help facilities are provided is based on the circumstances

surrounding the system.

7. Use Menus vs Text Entry. Use menus rather

than requiring the user to enter text information when a

limited set of options exist for input. This method is

faster, more efficient, eliminates potential input errors,

and reduces memorization.

*- 3. Be Consistent. Be consistent in the design of

the interface. Use the same procedures for entering input,

the same formats for displaying information on the screen,

and the same commands for exiting, saving, and traversing

through the various levels of the structure.

9. Anticipate Errors. Anticipate and provide a

means for correcting errors where possible. Embed the

syntax of the language in the system, transparent to the

user. Errors in the text should be correctable on the spot.

Users should be given the opportunity to review their input

9.%



and make corrections prior to processing the information.

The system design must protect the user from both himself

and the system. When errors occur, succinct error messages

are essential.

There are basically three categories of human-computer

dialogue (1:547-4o). The first category is where the user

requests information from the macnine basea on the data

stored in the machine. 1he primary communication of

information is from the computer to the user. The query

language used with data bases is a common example.

The second category is where the user selects an option

from a fixed set provided by the computer. Communication of

information flows equally in both directions between the

user and computer. Menu structures are examples of this

category.

The third category is where the user responds to

requests by the computer. Information flows primarily from

the user to the computer. Form-filling is an example of

this. Each type of dialogue provides a method of

communication uited for specific situations, but not all

situations. Most interfaces will contain a combination of

these types of dialogues.

Distributed Development Environments

This section focuses on the significant probiems and

issues that must be addressed in the design of an interface

in a distributed development environment. The term

15
• ° °



interface, in this context, refers to more tnan the

V.
. user-computer interface. It also includes the narIware ana

software interfaces between groups of workstations (or

*' nodes), between the workstations and the central system, and

between the workstation terminal equipment and the

communications equipment.

An overview of the major proolem areas and design

considerations of the system interfaces is necessary to gain

an understanding of the complexity of the design problem.

Understanding the key issues is essential for progress even

though they may not all be solvable (32:385).

-. Problems Associated with Distributed Interaction.
Database Semantics. Knowing something about how

a.

the information is stored inside the database can be

beneficial to the user. Users often have a need to find

certain information in the database but do not know exactly

where to look (L42:382). Some method of data directory

management will usually assist in solving this problem. A

facility to "browse through" the database may be available,

but it may also be a very time consuming process if the

database is large. Data dictionaries provide some of the

insight into how information is stored within the database

and should be available to all users. However, it is

difficult for data dictionaries to provide information on

the relationships between data. These relationships, and

*. other semantic knowledge of tne database, could help the

" .".-.. 16

.4
a'



users overcome this common problem.

Alternatives in Presentation of Information. ihe

requirement exists to present different types of information

in different forms (5, 8, 36, 42). Text is not the only

available type of information stored in databases.

Drawings, photographs, sound, and otner graphic

representations have a place in the workstation environment

and must oe supported as the application demands. The

alternatives available to present information depend on the

hardware and software capabilities of the workstation, now

the information is stored in the database, and the costs

associated with the transmission of the information.

One long term objective in the AFIT data dictionary

system environment is to be able to present data dictionary

| information in text format or in graphic form, such as

structure charts or SADT diagrams. Ideally, the information

would be stored in the database in the most efficient

manner, extracted and placed in the most efficient structure

for transmission purposes, and transmitted to the

workstation by the most efficient and economical means

available. The interface at the workstation should be able

to present that information in whatever form the user

requests.

Cost. Cost is a difficult item to control in the

distributed database environment. Cost is commonly measured

in actual transmission costs (dollars), tiihe, or space, or a

17

r . ..

.v,* .. .'2 ..



combination of the tnree (42:382). How and where the

_ information is stored in the database has a major impact on

the cost associated with the system. The capabilities and

limitations of the hardware within the system can affect

cost dramatically. The software used to access the data

(including the storage structures used, how the query

processing is distributed) can affect the cost dramatically

as well. The determination of transmission paths is also an

important variable in the overall cost equation. Designing

a system to analyze and evaluate these criteria is a

difficult and very complex task.

How information is temporarily stored as it is

retrieved from the database is an important design

consideration. The format of the file, such as binary or

ASCII, may impact the transmission capability. What file

structure is most efficient in terms of space and

transmission time is also important. The actual size of the

file will affect transmission.

Some applications for workstations require all

information pertaining to a particular project be

immediately available at the workstation. This enables the

designer to work on the project as an entire entity, rather

than piecemeal. In view of this environment, it would be

desirable to transmit all definitions of data items (whether

required for modifications or not) pertaining to a

particular project to the workstation. The most economical

W.-



Lfeans to transfer files over the transmission path should be

employed. With respect to project development, exactly how

mucn of the project data is required at the workstation

should be determined by the user.

The decision process in determining optimum storage

structures and the means of transmission is logically based

on three criteria. These criteria include the database

itself, the hardware capabilities and limitations of the

equipment involved, and the existing software. Each of

these items contribute greatly to the complexity of the cost

problem.

Generally, the system itself would analyze the overall

cost of alternatives and make a decision. If, however, the

system had the option to query the user for assistance in

making such decisions, then the user must De qualifiec to

provide such guidance. This introduces an additional

requirement that users be qualified to input guidance to the

system.

SupportinE Software Tools. A variety of tools are

used in conjunction with database management systems

(42:382). Report generation, statistic collection, or any -

other tailored query are all possible "tools" that could be

used to obtain or manipulate the data in the database.

There are basically three capabilities that must be

provided to adequately support any desired tool (42).

First, the interface must provide the user access to the

19

.,I



tools that are available for use. Second, the tool must

support the specific data desired by the user and must

control the execution of the other supporting tools, if

required, to properly access the data. In a distributed

database environment, different tools will reside at

different noaes within the network. These tools must

communicate with each other when circumstances arise that

require combinations of tools to perform database actions.

Third, the system must know the semantics of the database

and tools to provide correct facilities for presenting the

data in its proper form.

Because the tools and the data can be stored at a

variety of locations, the distributed database environment

adds to the complexity of the interface design. Decisions

have to be made by the system as to the best method of

procuring the required information for the user. Where

system decisions are not possible or practical, the

alternatives must be provided to the user for guidance.

Particular tools that are required in the DDS are those

that check for consistency within the database. Not all the

data pertaining to a particular project is provided by a

single user. Project definitions will obtain data

indirectly from other sources. The database itself must be

searched to provide some of this critical data. There is a

requirement for the instantiation of the tool that provides

this service after updates have been made to the database.

20



*Where these tools are stored and how they are executed is of

critical importance.

In environments where all information pertaining to a

particular project is at the workstation, some facility

should be available to process all modifications (direct and

indirect) to the cata, at the workstation, prior to

transfering the information back to the database. If data

definitions in a data dictionary system are deleted as the

result of the update process, the database should recognize

the deletions upon the updating of the database from the

temporary file.

Framework for a Distributed Database Interface.

Although the scope of this thesis limits the investigation

to only a workstation interfacing with a single central data

base, there are clear applications for distributed database

environments. Wilson proposed a conceptual framework for the

distributed database interface (42:382-3). Five categories

of knowledge provide the foundation for this framework:

database schema knowledge, database semantic knowledge,

generic and individual user model knowledge, communication

knowledge, and equipment knowledge. Each of these knowledge

bases are important to the designer. Each provides

capabilities and limitations that will impact the design of

the system and must be considered. Although endowing an

interface with an abundance of knowledge from all five

categories is not possible yet, providing some from all

21



categories and more from those particularly relevant to the

* *:~.:interface, is a genuine goal. Figure 1 shows a graphical

representation of this framework, and an explanation of each

body of knowledge follows.

DISTRIBUTED C UDUNAI

DATABASE USE MOEL

DATAAWLEDGEEDG
LI

MIWM

DITRBUE

COMNCTO

DAABS iBM g e raeor o aDstiu eDataas
SntrfaeNTIC32)

KNUEG

~~C* ~~ * * .**~ * *EQUIPMENT~



Database Schema Knowledge. The schema knowledge

is the logical structure of the entire database (42:382).

The system Liust know how and where the data is stored within

the distributed network of nodes. The version of the

database stored at each node is important information. The

type database management systems employed at the various

nodes is important. The query languages supporting the

local database must be known. The methods of concurrent

update operations to data must be known. Database schema

knowledge is used in the formulation of queries to the

database. Where users directly formulate their own queries

this knowledge is used as an error checking mechanism. This

knowledge can also be used for translating natural language

representations of queries into the required database

management system query language.

Semantic Database Knowledge. This knowledge is

similar to data dictionary knowledge, but is more extensive

in scope. It includes knowledge about how the information

is stored in the database, the limitation on information

that is stored, and, most importantly, the relationships

among the different fields of data in the database.

Increasing the intelligence of the system through semantic

modeling of the database design and definition is a much

needed capability to improve database usability (3:1).

•. 'aa23

p. ~ ]

• " - -' " -' " ' " " " " " " -" '2 " " - -" ' v . .- -' . " . .-. . - .- . • . .-' . -...-- . -



Generic and Specific User Model Knowleage. In any

r distributed environment there will be different categories

of users (42, 44). The general categories of users will be:

1) infrequent or novice users who having sporadic and

limited direct access requirements of the data (for example,

managers, decision makers); 2) casual users who use the

database frequently, but only in limited ways; 3)

experienced users who are the regular and frequent users of

the database; and 4) programmer users who manage and extend

the database (known as Data Administrators, DA, or Dataoase

Administrators, DBA). Capturing the knowledge of the target

user group will lead to more user-friendly environments

(5:18). Generic models include those items that all

interfaces should provide, such as preferred modes of

interaction for classes of users. Specific user models are

tailored to the needs and requirements unique to certain

users.

Communication Knowledge. Communication Knowledge

contains information on the costs necessary to acquire data

from other nodes within the network (4,). A primary

objective of most interfaces is to keep the structure of the

distributed system transparent to the user, but at times it

is necessary to provide this information directly to the

user. Alternatives availaole to transfer data between

nodes, with their associated costs, is known and should te

provided to the user where required. Costs associated with

f-'. 24

o5

'V . . . . . .. . . .. . ....
" ) ) °- : " " ; " " - '" -5" " ""' -;' "- ' " - ' - . '- " -" . '"- ' "' ' " -" "- " •, -".



transforming jata into various forms should ilso be known

.. and made available to the user as necessary.

Equipment Knowledge. The equipment available at

any site will affect the design of the interface. Tne

functional capabilities of the devices will dictate, araong

other things, the alternatives available for information

representation. The user interface must know whetner

graphics or color, for example, can be supported at a

particular node. The interface should be designed to take

advantage of all the capabilities currently available at any

node, with the ability to accommodate future upgrades.

Summary

The purpose of this literature search was to uncover

information found in the current literature that pertains to

data dictionary systems, human-computer interfaces, and

distributed development environments. Estaolishing a

foundation of understanding the fundamental concepts in each

these areas was necessary before the requirements for a data

dictionary system in the AFIT environment couli be

established. The information in this chapter providea that

foundation.



III. Data Dictionary System Requirements

The contents of this chapter present the requirements

of the data dictionary system within the distributed

software development environment. The chapter is dividea

into three sections. The first section devoted to the

analysis of the overall system, the second section devoted

to the requirements of the data dictionary editor, and the

final section devoted to the requirements of the interface

to the database.

Overall System Analysis

The distributed software development environment at

AFIT is shown in Figure 2. It consists of a contingent of

workstations, a central computer, and the communications

links between the computers. The workstations include a

variety of types from personal computers at students' homes

to the sophisticated Sun workstations in the computer

laboratories. The central computer is a Vax-11/780 that can

operate under the Unix or VMS operating systems. Ihe

database management system INGRES is available with both

operating systems (different versions for each) and is to be

used for the storage of data dictionary data. The

workstation links to the central computer are through a

Gandalf switch. This Gandalf switch also provides a dialup

capability for the home computers to communicate with the

central computer.

26



- - - - - -- - -

ATIN AXtl78

aUNI

LOCAL AMDAL

UORKSTA? !O"

Figure 2. Distributed Development Environment.

The objective of a distributed development environment

is to provide the facilities for users to perform the

majority of their research at individual workstations in tne '

27

.9. %



comfort and convenience of their local work areas or home.

'Using workstations for the majority of information

processing suostantially reduces the studenL's reliance on

the availability of the central computer central processor

unit (cpu) ana consequently provides favorable conditions

for improving efficiency of student research.

The target user group consists of graduate students at

AFIT pursuing a curriculum in electrical or computer

engineering. All users will have some experience with

computers and will be familiar with the requirements

document for data dictionary information. Users will be

familiar with the Unix Vax-11/730 (SSC) computer and will

most likely have some experience with the use of

microcomputers.

0 Software development documentation standards at AFIT

follow the software lifecycle phases consisting of the

requirements analysis phase, the preliminary and detailed

design phases, and the implementation phase. Grapnical

representations often used to support the documentation

requirements include Structured Analysis Design Technique

(SADT) diagrams (SADT is a registered trademark of SofTec)

for the requirements analysis phase, and Structure Charts

(SC) and Data Flow Diagrams for the design phase. Data

dictionaries often accompany these representations in

addition to accompaning the actual code (37).

The distributed environment is required to support the

-..



, -. . -' - -- .. . - . . - . - - . - . ... .. , -

capaoility to generate and update data dictionary

definitions at the workstation and transnit these

definitions between the workstation and the central

database. !ew definitions created at the workstation are

transmitted to the central computer for storage in the

database. Existing definitions requiring updates are

retrieved from the database and transmitted to the

workstation for updating. Inherent in this requirement is

the need for a user-friendly designed editor on the

workstation, a communications interface that provides the

transmission capability between computers, and the

corresponding interface on the central computer that can

load and retrieve definitions to and from the database.

The contents of data dictionary definitions for the

phases of the lifecycle stated above are detailed in the

Department of Electrical and Computer Engineering Software

Development Documentation Guidelines and Standards (37).

Sample definitions are shown in Figures 3 and 4 for a

structure chart process and parameter in the design phase.

This represents the data that should be represented in the

database and is often referred to as operational data (7:7).

29

'-..



PRNAME: Process Message
PROJECT: NETOS-ISO
NUMBER: 4.0.1
DESCRIPTION: Process a NETOS message.
INPUT DATA: msgptr
INPUT FLAGS: none
OUTPUT DATA: none
OUTPUT FLAGS: error2
ALIASES: PROCMSG
CALLING PROCESSES: Process Messages and Data

PROCESSES CALLED: Decompose Message
Process Network 4 Messages
Determine Channel Number
Build Queue Buffer for Qty = I

Put Buffer in Queue
Level 4 Cleanup

ALGORITHM:
Decompose message.
If network message

Process Network 4 Messages

else
Determine channel number
Build queue buffer
Put buffer in queue

Cleanup Level 4.

REFERENCE: PROCESS SPOOLER MESSAGE
REFERENCE TYPE: SADT

REFERENCE: Smith's Algorithm, p. 23-24
REFERENCE TYPE: text

VERSION: 1.1
VERSION CHANGES: Added module "Level 4 Cleanup"

DATE: 11/25/85
AUTHOR: J. W. Foley

"igure 3. Data Dictionary Format for Structure
Chart-Process (37 :27)

The use of structure charts in the design phase is one

area that has received considerable attention for research

at AFIT. Attempts to automate the storage of information

30

I !  I 1 t  I I I !  I I I t ' * i i -I • i - . * I ' l I  
. . .. . .. - .. . .

w
t

o
o

* .4% ' ' ' ' ' - , . . % " ,- - . . . , . . -. .



PANAME: mess-parts
PROJECT: NETOS-ISO
DESCRIPTION: Decompose parameters.
DATA TYPE: Composite
MIN VALUE: none
MAX VALUE: none
RANGE: none
VALUES: none
PART OF: none
COMPOSED OF: SRC

DST
SPN
DPN
USE
QTY
Buffer

ALIAS: Message Parts
WHERE USED: Passed from Decompose Message to Val Parts
COMMENT: Part of earlier design

REFERENCES: SADT - MSG-PARTS
REFERENCE TYPE: SADT

VERSION: 1.2
DATE: 11/05/85
AUTHOR: J. W. Foley
VERSION COMMENT: USE added to allow network msgs.

CALLING PROCESS: Process Message
PROCESS CALLED: Decompose Message(partslist)
DIRECTION: up
I/O PARAMETER NAME: parts-list

'igure 4. Data Dictionary Format for Structure
Chart-Parameter (37:29-30).

directly from structure chart into the database management

system identified certain problems that required additional

constraints to be placed on the design methodology (10). A

typical structure chart is shown in Figure 5. It presents a

graphical representation of information to help designers

visualize and understand the relationships between processes

and parameters (16).

31

" i : , - -" .., : ' , " " " " ' " ' " ' ." " " " ' ." ' . ' ." . ." ' " ." ." " " " " . ." . ." " ." " .' " ' ." ." " " " ' ." -" ." " . ." . " . -. - v



AUTHOR. TEAM 3 I ATE. ~io-9Ss READER
PROJECT@ NETOS-ISO REV@ DATE

S PROCESS
MESSAGE

4.0.1I

NO[ I TTLEI NCOMPLET

MESSAGE SSMSSG (AER4

Figure 5. Typical Structure Chart (37).

A particular problem that involved the passing of

parameters between processes is shown in Figure 6. ks shown

in a conventional structure chart in Figure 6 (a), two

separate processes call a common process "sort2".

32



P7 - .. ol-

DETERMINE SORT-SALARY
PARENT

. 13.4

AGE\ \ PARENT SALL L.

5GE2 LOU-SAIL

SORT2
2.1.2

A. CONVENTIONAL STRUCTURE CHANT

DETERMINE SORT-SALARY
PARENT

2.3.4

AGE CLD SALU-A

1 I-SA.

INI~ Ut-L
Ina OU'T-41

SORT2
2'.1.2

3. PASSED PARA EIERS AND 1/O PARAMETERS

Figure 6. Example of Parameter Passing (37).

Each calling process passes to "sort2" two different

parameters. The values returned from "sort2" are similar in

33

-k.'-- -2.-1

5.-."

..- . - . - - . - - . . - . .,, . '. ." -. ,. . ., . - '.. " . '." . . ,'. ,, . , ., , ' ,'. -. . % , , , -, ,, . .% . . . . .'% ,.' , 1 . , . . .



that they boch represent numerical values, but their

meanings are different -- "determine parent" expects a

"parent" and "child" returned, while "sort-salary" expects a

"lowsal" and "hi sal" to be returned. The ambiguity in the

returned values from "sort2" led to the anomoly condition

that automated tools could not properly handle (16). Figure

6 (0) shows how the modified structure chart appears,

adhering to the new parameter constraints. As research

continues additional modifications to the conventional

design tools should be incorporated as necessary. These

seemingly small details of information are important and

must be captured and provided for in the data dictionary

system.

A second category of information that needs to be

considered is support data, that data which directly

supports the requirements of the Data Administrator (7, 22).

To manage the database the DA has requirements over and

above those of the user. The data dictionary system must be

aole to maintain an audit trail for the DA to monitor the

contents of the database. The DA must also keep an accurate

list of all personnel authorized to use the system, along

with their privileges (read and/or write) and passwords.

The DA must also have the capability to send messages to all

users of the system when necessary. Although this data is

important, it was estimated that tnis requirement was beyond

the scope of this thesis. It is included in this chapter

I-'', I



W-* I--k W. 4 W% -W ,~W -1 J 'W J W. "r.: - W .: - f F-F

for information purposes only to provide the reader with a

better understanding of tne requirements of a complete data

dictionary systemn.

The database design to support the operational data

requirements of design phase of the lifecycle was

fundamentally determined prior to this thesis investigation.

The chronology of events that led to the current design is

summarized below. rhe original third normal form relations

were designed as a result of one thesis effort (39) and

numerous other classroom projects. rhis original set was

subsequently modifiea, based on user experience with the

system, which resulted in the removal of three items from

process relations. Global variable information was deleted

since the use of global variables is traditionally

0- discouraged and the fields were seldom used in the design

phase. Hardware I/O and File I/O were also removed

primarily because they were much more implementation

dependent and seldom used in the design phase. Other minor

modifications to field names and sizes were made to arrive

at the set of the third normal form relations currently

implemented in the database and shown in Figures 7 and d.

Direct mapping techniques were employed to confirm that all

data items within the data dictionary definitions were

satisfactorily supported by the database shown above.

*35

)* .,



process:
*project c12 - Project name
*prname c25 - Process name
number c20 - Process number

prdesc:
"project c12
*prname c25
*line i2 - Description line number
description c60 - Description text

pralg:
"project c12
"prname c25
"line i2 - Algorithm line number
algorithm c60 - Algorithm text

processio:
"project c12
"prname c25
"paname c25 - Name of i/o parameter
direction c4 - Input "in"/output "out"
ptype c4 - "data" or "flag"

prcall:
*project c12
*prcalling c25 - Calling process name
*prcalled c25 - Process called name

prreference:
"project c12
*prname c25
"reference c60 - Reference description
reftype c25 - Reference type

pralias:
"project c12
"prname c25
"aliasname c25 - Name of alias for prname
comment c60 - Why alias is needed

prhistory:
"project c12
"prname c25
"version clO - Version number of this entry
date c8 - Date of this entry
author c20 - Author of this entry
comment c60 - Changes from last version

Figure 7. Third Normal Form Relations for a
Design Structure Chart Process.

36

-,....-..



parameter:
project c12 - Project name
*paname c25 - Parameter name
datatype c25 - Language independent data type
low c15 - Lowest value allowed, if any
high c15 - Highest value allowed, if any
span c60 - Range of allowed values, if any

padesc:
*project c12
-paname c25
*line i2
description c60 - Parameter description

pavalueset:
*project c12
*paname c25
*value c15 - An allowable value for paname

pahierarchy:
*project c12
*hipaname c25 - Name of composite parameter
*lopaname c25 - Name of component parameter

paref:
*project c12
paname c25
*reference c60 - Reference description
reftype c25 - Reference type

paalias:
*project c12
*paname c25
*aliasname c25 - Name of alias for paname
comment c60 - Why this alias is needed
whereused c25 - Process name where found

pahistory:
*project c12
paname c25
*version CIO
date c8
author c20
comment c60 - Changes from last version

papassed:
*project c12
paname c25
"prcalling c25 - Calling process name
*prcalled c25 - Called process name
direction c4 - Direction "up" or "down"
lopaname c25 - Name of i/o parameter

Figure d. Third Noriai Form Relations for a
Design Structure Chart Parameter.

37

...................... . . . .. . . .



.~~~~F .11 -a- %- ~ -. 9. -'W-'- *'

There is a requirement to provide the comunications

interface Detween the workstation and the central computer.

Ideally, this interface should be designed as an integral

part of the "system" and activated within the environment of

the workstation editor or interface software on the central

computer. However, it was anticipated that tnis portion of

the system would not be a high priority because of the

existing file transfer programs available within the

academic laboratories or commercially available to the

students.

The user should have the capability to perform add,

update, print, and view operations on the database from any

location in the distributed environment (39). Users also

have a requirement for additional operations (or queries) on

the database, for example:

1.) Determine all processes that call a particular
process.

2.) Determine all processes that use a particular
parameter or aliases of the parameter.

3.) Determine all parameters associated with a
particular project.

4.) Determine all I/O parameters of a particular
process.

5.) Determine all aliases for a particular parameter.

o.) Determine all processes associated with a
particular author.

7.) Determine all authors associated with a particular
project.

The word "determine" could be interpreted as "display" on

38
-.

,, 5 , . -,,% - . . , . - , . . • - . - . - .' , . . , . .- ,- . . , . < ,....-% ,,% , -% . .- .



the screen, "send" to a line printer or file, or "place" in

a standard report. The operations listed above use the

terminology for the design phase, but the operations should

be interpreted as requirements for all phases of the

lifecycle.

A data administrator should have access to all the user

operations, plus some additional operations peculiar to

supervisory responsibilities. It is understood that the DA

has direct access to the database where the users do not,

and, subsequently, can use the data definition language to

extract any Cata item desired. A complete data dictionary

system would provide software to facilitate the DA's efforts

in managing the database. This software woula assist the DA

in

11 ...deciding the information content of the database,
... deciding the storage structures and access
strategies, ... defining authorization checks and
validation procedures, ...defining a strategy for
backup and recovery, ... [and] monitoring performance
and responding to changes in requirements" (7:25-26).

It would be desirable to have some facility that would

automate the generation of data dictionary entries given a

file containing structure charts or modules of code. Data

entities could then be entered into the dictionary database

without requiring the user to input it separately through

the use of a special editor. There is a potential for

increased efficiency, but not without cost. First, the

amount of information extracted from the files may be

limited and, therefore, may necessitate a substantial user

a .'-:.. 39

p



session with the database. Second, possibilities exist that

undesirable inconsistencies will develop that could result

in serious damage to the database. Third, recognition of

redundancies (planned and unplanned) and multiple uses of

entities are, at best, difficult by mechanical means. These

redundancies and uses of entities will enter the database

and may seriously decrement the effectiveness of the DDS

system (22:2-13). This alternative is mentioned here for

information purposes only uecause of its potential for use

in data dictionary systems. It will not be addressed again

within this thesis report.

Data Dictionary Editor Requirements

The data dictionary editor was required to run on the

workstation. It was required to be a user-friendly designed

editor that would allow the user to input all necessary data

dictionary definition information as specified in the

department guidelines. The purpose of the special editor

was to provide the user with an efficient means of creating

and modifying data dictionary definitions. SADT diagrams

located in Appendix D outline the general requirements of

the data dictionary editor as stated here.

rhe editor must be designed for evolution. The

aocumentation standards, published by the Electrical and

Computer Engineering department, are reviewed and updated

periodically. Some department and research advisors require

various other forms of documentation. Other environmental

' " 40

'4U .]

~ ]



conditions may dictate other changes in tne system.

The editor must be designed to anticipate, prevent,

identify, and correct errors. In addition to the items

outlined in Chapter II, peculiarities of INGRES, such as

unrecognizable characters, must be guarded against. When

errors in processing information to the database occur, a

transaction log of some kind would help identify what

information was processed correctly, what failed to get

processed and, if possible, the reasons for the errors.

Some method of "pretesting" the file for correct format and

nonblank key fields would also be useful.

A major requirement of the editor is that it oe

generic. This means that the editor software is not to be

designed to support only a single phase of the lifecycle.

It should be designed in such a fashion that it would

provide the same editing facilities for any of the phases of

the software lifecycle.

The editor is to be designed to be portable to other

workstations with the minimum of modifications. Hardware

dependent functions are to be separated from the main

portion of the code to the extent possible to permit easy

substitution modules for other machines. Only the standard

24 row by 30 column size screen is to be used and only one

color is to be used.

re output of the editor was required to be in a

format that can be read and understood by the interface



W*- 7 -0- -- -. -*- -. -- W" WwS S -c k - R -

s Df-wire ranning on the central computer. Likewise, the

editor was required to read and understand the format of the

output generated by the central computer.

Central Computer Database Interface

The iaterface software on the central computer is

required to translate the definitions generated by the

workstation editor and load these definitions into the

database. Definitions needing updates are required to be

retrieved from the database and sent to the workstation in a

format that could oe read and understood by the editor.

Ideally, these operations should be accessible from any

location within the distributed environment.

Database Interface Facilities. On-line processing

facilities provide the user with immediate access to the

database and should be provided (22). Interaction with the

database is accomplished while the user is using the system.

This method is generally used when only a short period of

time is needed to perform the task at hand, or a small

amount of information is needed quickly. Examples wouild

include a user who needs to make a simple modification to an

existing data dictionary entry, or a user who needs to

verify a certain piece of data exists witnin the database.

Batch processing facilities should be proviaed since

interaction with databases can be a time consuming and

frustrating experience for a user (22). Batch facilities

permit new data dictionary entries to be submitted to the

42

. .; . -,.,,: .- , .- ,,.-., . ,. . ,. . , ~ . . . .,: .... . . ..* .-.....-.'.-. .... .... , .. .'

, ,, ,,,r,,.j , q . , . . , r.. , ., " - -. " 
.

,. , .- ,* * .- *.*o. .-. ,," , .- . . '-. . - '. '.% % * " I' ° .% '. . ".....o



aitacase tnrough a batch of iata alreaay prepared in a fixed

Dfrmat acceptasle by tne sysTte. The advantage of such a

facility is that large amounts of information can be entered

into the dictionary database without the user's presence

requirei at the terminal.

Security of the Database. Protection of any data

dictionary system from unauthorized access is important for

two primary reasons. First, the dictionary aatabase

contains, by its very nature, a complete description of the

organization's processing system, information that usually

is not desired for public exposure. Second, and more

important for the AFIT environment, is that the dictionary

database must be a trusted and reliable source of

information. Accidental or intentional tampering with the

data will degrade its reliability and render the system less

useful (22:2-20).

The purpose of the data dictionary system, the

environment in which the system is implemented, and a host

of other factors will affect how security measures will oe

employed. Generally, security systems should distinguish

between the reading, creating, modifying, and deleting of

data. The DA is usually tasked with managing the security

issues (22:2-20,21).

In the AFIT academic environment, intentional tampering

with the database is not a major concern. This does not,

however, eliminate the requirement for security measures.

',, . . 43-*'



Security measures should include the following:

1.) Access to the dictionary database should be
restricted to only those persons wno have a validated
requirement.

2.) Operations on the data that include destructive

action (i.e. delete, modify) must be carefully manageI
to preclude any intentional or unintentional damage to
the database.

3.) Direct access to the database via Ingres should oe
restricted to the DA. Users should access the data
only through the provided tools.

4.) A responsible owner (programer or team) should be
defined for all data. Only the owner can modify the
data.

Summary

This chapter described the requirements for a complete

data dictionary system that supports tne development of

software in the AFII distributed development environment.

The most important requirement in tnis environment was

capability of the workstation to effectively communicate

information to the central coiiputer database and vice-versa.

Generic and portability requirements were two important

issues that had to be considered throughout the design stage

of the editor to facilitate the growth potential of that

portion of the system. The contents of following chapter

will focus on the design of the distributed data dictionary

system based on the requirements estaulished nere.

4 44

"- ,'. °-" "' "- "" " "" '- ""-""-" "- "- ". "- -." .°' " -. " ' ' "' "-'" "- ' "-" -"'."- ." ' --'" '. " --' '.''. '. -" ,-1



I

IV. Data Dictionarv System Design

The requirements identified in Chapter III established

the foundation for the actual design of the data dictionary

system. The data dictionary system consists of three

separate but integrated components. The first component is

the special editor designed for the workstation. The second

component is the communications element between the

workstation and the central computer. The third component

is the interface to the database that exists on the central

computer. The design and development of these three

components are addressed separately in this chapter.

Data Dictionary Editor Design

The Zenith Z-IO0 microcomputer was chosen as theI ~

prototype workstation for tne implementation of the data

dictionary editor. This computer was chosen for two primary

reasons. First, it supported the standard ic-bit operating

system in use today by microcomputers (MS-DOS). Second,

There are a large number of Z-100 comnputers availaole for

student use in the academic areas.

The "C" programming language was the language of choice

for this editor. This was because the Berkeley version of

the database management system INGRES, used on the

nainframe, only supports "C" in accessing the database

througn its embedded query language. Since the software on

4D

p %++



the mainframe was going to be implemented in "C", it was

logical (although not required) to use "C" in the

workstation software as well. Another important

consideration was the fact that "C" was supported by the

majority of the other computers available for student use in

the labs. This facilitates the portability of the code to

these other computers.

A set of design structure charts for the data

dictionary editor are located in Appendix E.

User-Machine Interface.

Dialogue. The user-machine interface dialogue

consists of a screen-oriented combination of menu-selection

and form-filling displays. Menu-selection is used in the

initial stages of the tool while form-filling dominates the

editing session of the tool.

Generally, menu-selection is the preferred method of

obtaining user input when only a small, limited number of

options exist for the user to choose (1, 10, 27). The

initial stages in the execution of the editor tool require

the user to identify whether a Create or Update session is

desired (see Figure 9). In the event of a Create, the

lifecycle 'phase' and 'category' must be identified (sample

menus for creating a definition in the design phase are

shown in Figures 10 and 11). If an Update session is

desired, the user is prompted for the name of the file to

update.

%.NIP-46

Uz~~c I



PLACE CURSOR IN BOX, PRESS MRTURN

!~ CREATE NEW DEFINITION

r 31 UPDATE EXISTING DE'FINITION

C 3 EXIT PROQRA
M

Figure 9. Opening Menu on the Editor.

Choosing these menu selections, rather than requiring

the user to type entries at the keyboard, provides a more

efficient system requiring a minimum amount of training

necessary to use. Menu-selection reduces the memorization

-..

.','-4 ,.% .,,-: ,-; .,-',,,% , ' ,-.--.,..........:., .:.,,-.;,-.-...-.-.-.-.- ; .(: ...... . ..... . ..



CREATE

PLACE CURSOR IN BOX, PRESS (RETURN)

E 3 REGUIREMENTS ANALYSIS PHASE

C 3 DESIGN PHASE

C 3 CODE PHASE

C 3 EXIT TO PREVIOUS MENU

Figure 10. Menu i2 for Create.

required by the user, reduces the potential for

typographical errors, and reduces the number of required

keystrokes (1, 10). It is expected that users of this tool

48.

II]



7 77 7 .7 *7 *77:1

CREATE T DESIGN

PLACE CURSOR IN BOX, PRESS <RETURN)

r 3 STRUCTURE CHART -- PROCESS

C 3 STRUCTURE CHART -- PARAMETER

C 3 EXIT TO PREUIOUS MENU

Figure 11. Menu #3 for Create.

will include those who use it occasionally (for classroom

purposes only) and those who will use it frequently (for

thesis research).

Menu-driven control of a program is sometimes

.S4'

".-•- - .. --" " """:. ..""" -" -" " ' ''' -" - " ..- ' "-" " " .'' -" " -"- i --."



criticized for being too slow for experienced users (10).

Because a maximum of three and a minimum of two menus can be

presented to the user, the experienced user should not

suffer from potential frustration or boredom with the tool.

Other input devices were considered, such as a mouse or

light pen, but were eliminated due to reduced tool

portability and limited usefulness in predominantly tex.

editing environments.

The form-filling method was chosen as the primary

method for display and input in the editing portion of tie

tool. Predefined, formatted structures, called templates,

are used as the basic form. There are three main reasons

for this choice. First, the nature of the data dictionary

definition lent itself very well to a blank form-filling

operation, since a variety of fields exist for each

definition. There are limitations on some of the entries

for these fields, mostly related to the length of the input,

but the vast majority of fields contained no limitations or

restrictions on the information entered or format upon which

it is entered.

Second, the form-filling method presented the

information on the screen in a manner that closely resemoled

the format required by the department. Being familiar with

the display of information, along with the syntax and

semantics of the required input, reduces the initial shocK

and possible apprehension of the system users mignt

5.0



otherwise experience.

Third, for-filling provided a "highly disciplined mode

of modification that guaranteed the structural integrity Lof

the data dictionary definition]" (40:102). Because movement

of the cursor into unauthorized areas is prohioited,

movement between fields is easily accomplished and input

error cnecking capability is enhanced.

One alternative available for obtaining textural input

was the existing implementation of the system where entries

are made line-by-line as the system prompts the user with

various data fields. Modification to any single item witnin

a definition requires the review of the entire definition.

This was the method employed in previous versions of the

tool and was considered unsatisfactory. Line-by-line

editing of a definition was determined to be too slow, too

clumsy, and too inefficient to warrant its use.

Another alternative for inputting textural information

was simply using an existing text editor to create

definitions from scratch or update definitions inside a

readable flat file. This alternative holds some merit in

that it would eliminate the requirement for a special

editor, but not without significant cost. The aatabase

management system INGRES is sensitive to precise

characteristics of input data, such as upper case letters

versus lower case letters, semi-colons versus colons, blank

spaces versus commas or hyphens, and hidden commands such as

51

0 .

'4 "" " - '" 7"" ,- 'T- V ?;L;: ; . ... ';; '; ; " :'



control codes or escape codes (11, 12). Attempts to

communicate with INGRES in the wrong syntax would fail or

possibly cause bad data to be stored in the database. A

problem of even greater concern is one where a portion of

the data definition is successfully loaded into the database

when a syntax or format error causes the remainder of tne

data definition to fail to get loaded. The database is left

with an incomplete definition, leading to an inconsistent

and unreliable database.

The cost of overcoming these types of interface

problems could be substantial. The interface software must

be able to carefully analyze every line of text within the

file for every possible syntax, grammatical, and format

error. This includes identifying misspelled field

identifiers, handling out-of-order sequences of fields,

input that exceeds field lengths, and so on. There is no

question that this type of interface software would provide

a valuable service, but its design and development would

require considerable time.

Screen Display. The actual display of information

on the screen plays an important role in the design of

user-friendly interfaces (1, 10, 18, 27). The screen

display shown in Figure 12 was designed for this tool. All

menus are displayed consistently throughout the tool with

regard to their location on the screen, appearance, and

method of choice selection.

52

'.



flCEaU 81 CNOICE 22 $ CHO01CE aS(MU $3 CNOICE FILEeAE'

WORK AREA

Figure 12. Sample Screen Display.

The top line of information provides the user with the

location within the hierarchical structure of the progra~n,

and remains on the screen throughout the use of tile tool.

Ihe results of each menu selection are provided in this line

as the user traverses through the tool. This facility

eliminates the requirement for the user to memorize tiis

information.

The remainder of the screen displays the menus.

General editing takes place in this area as well. While in

5-3



the edit session, the screen is divided into two parts, the

left one-fourth of the screen and the right three-fourths of

the screen. The left portion is reserved for field names

only (title), while tne right portion of the screen is

reserved for user input (data).

While editing a file, the cursor is restricted from

moving into the left portion of the screen. All input areas

are highlighted in reverse video, clearly indicating the

maximum length of each entry. The restrictions on the

movement of the cursor (outside of any reverse video block)

reduce the potential for error. These restrictions are

designed to permit the user to concentrate on what

information goes into each block rather than the mechanics

involved in getting to the proper location on the screen.

An alternative in presenting the information on the

screen would include the elimination of the top line that

contains important information for the user. Tnis would

enhance the editing capabilities by permitting scrolling the

text off the top of the screen as required, versus the

repainting the screen that is employed with the presence of

the window. The decision was made to keep the line of

information because of its projected value to the user and

accept the degraded mode of scrolling.

The information displayed on the screen is exactly what

is stored in the data file. This system is commonly known

as "what you see is what you get." This provides immediate

5,4U. 5

. ... -,.. ,,,,,,. . , , r . ,. , ,.. ., .,,, ,-, •
.. ; .. . •.j',.; -. ,,.-;..-.. ,. ..-.-. ,.,., .. ,,.,B



I
feedback to the user that the tool is doing useful work.

"oO This contrioutes to providing the user with the

psychological closure that is important in the design of any

Iuser-friendly system (27).

One issue that might generate some concern is the

screen becoming cluttered with textural information. This

is a distinct possibility if some of the multiple line

entries in a definition contain a large number of lines of

text. The degree of distraction or confusion this might

cause the user is expected to be minimal since the text on

the screen will be similar to any text file with which most

users will be familiar. Blank lines are used to separate

each field, which will alleviate some of the potential for

clutter.

CData Structures. One primary data structure is

employed in the editing phase. This particular structure

represents a single line of data in the buffer (and on the

of information in that line. The term "buffer" refers to

the entire data dictionary definition in memory (it was

established during the design of the editor that only one

data dictionary definition would, initially, reside in

memory at any one time). The contents of the buffer are

linked, together in a doubly-linked circular list. Linked

lists are used extensively in editors because they so

effectively support insertions, deletions, allocation and

55

- .." . .- . " . . . -



deallocation of resources (26:173). The doubly-linked

44 h. structure permits easy traversing forward and backward

through the buffer. The circular list concept provides

immediate access to the front and rear of the linked list.

The data structures that were linked were actual

'structures' in the C programming language, similar to

'records' in Pascal or Ada. Each structure defines one

comolete line of information that appears on the screen (see

Figure 13).

The first and last items in the structure are pointers

and provide the forward and backward links in the linked

list.

The Title field stores the title of the type of

information found in the next field called Data. The

character string contains a maximum of 20 characters.

Examples of entries in the Title field are "NAME:",

"PROJECT:", and "VERSION:". Three additional keywords, or

symbols, are used to identify related information. The

keyword "blank" represents a empty structure and is used to

provide blank lines on the screen that separate entries.

The keyword "(cont)" is used to identify the first line of a

multiple line, multiple entry item that has been inserted

into the linked list. The symbol "*" is used to identify

the second, third, or fourth line of a similar entry. The

printable information in this field appears on the screen in

the area labeled "RESTRICTED AREA".

56
.4 .. , .

i °"

9.



'S

-4 PREVIOUS

?TTLE
DATA
LENCI14
NULL IE
MULTEHNTY

G PREVIOUS

0e@

NEXT S

NEXT

F-igure 13. Linked Structure Used in the Editor

'

.

The data field contains the input from the user, its

length determined by tne integer field length. The maximum

length of the field is 60 characters, restricted by the size

57

5..

-



of the video screen. The information in this field appears

in reverse video on the screen in the area labelled "USER

4ORK AREA".

The fields 'multline' and 'multentry' together provide

important information as to the type of entry permitted in

the particular structure. There are three types of entries

available for any data dictionary definition. The first is

a single line entry. A value of '0' in the ':nultline' field

indicates this type of entry. The second is a single line

with multiple entries permitted. A value of '0' in the

'multline' field and 'I' in the 'multentry' field indicate

this type of entry. The third is a multiple line witn

* multiple entries permitted. Values greater than '0' in both

fields indicate this type of entry. The 'multline' field

contains the number of the line with respect to the total

number of lines (for example, a 1, 2, or 3 in a 3-line

entry). The 'multentry' field contains the total number of

lines per entry (either 2, 3, or 4 in the current

implementation). Therefore a structure containing the

values 'rliultline' = 2, 'multentry' = 4 indicates that the

data field in the structure contains the second of four

lines of information for a particular entry. These fields

are used during the edit phase to control line insertion and

deletion. They are also used in preparing the data for

downloading into the database.

As the tool reads a template (if CREATE) or an actual

58

.< , ..,: . ., . . .: . . .:•.'' .-'-. . -'-'',- ... .* .v,, .-''-. '-.' -- --.: -'-'"- .," -'.--"1 7



i efinition if UPDATE) f rom a file, structures are

Jyna:ni: ally allocated space in memory and inserted into Fhe

ouffer in tne form of a linked list. This enables tne tool

to make efficient use of memory. Line insertion operations,

within the editor, cause space to be dynaiaicaily allocatec

for new structures which are inserted into the proper

location in the linked list. Line deletion operations cause

the reverse set of actions to occur. Line insertions and

deletions clearly demonstrate the advantages of' using linked

data structures for editing environments.

WindowinZ Scheme. The elements of the visual display

discussed in this section focus on how information gets to

thie screen. It should be apparent that no data dictionary

definition is going to fit on the screen in its entirety, or

even come close. A syster had to be developed that woild

control what portion (or window) of the definition boffer

would be displayed on the screen and how windows or

information could be moved on and off the screen. This is a

basic requirement of screen-oriented editors.

The system designed and impleurented in tnis tool

involves a "windowing scheine" (see Figure 14).

Global pointers are defined to keep track of tne too of

tne ouffer (topbuffer), the oottom of the suffer

(ootbuffer), the top of the window (topwindow), and the

bottom of the iindow (uotwindow). Topouffer points to the

4..

I ,.

• . ' o o

" .[,'-l

5.



-tOPBUFFER

0-AME

PROJECT
TOPYINOWt NUMBER

0- T --------------DESCRIPTIOtI

I I UT DATA

INPUT FLAG

OUTPUT DATA

OUTPUT FLAG

ALIASES &

COMflENT

CALLING PROCESSES
PROCESSES CALLED

BOTUZN400U I ( CONT)
90TWNGV( CONT )

(COtTI

0

0

DATE
AUTHOR

BOTBUFFER

Figure 14. Screen Editor "windowing Scnemae".

very first structure in the linked list, while botbuffer

points to the very last structure in the linked list. £'hese

'"* 60
d

SI

* : . . ._'.o* ' . '.- ' .. ' . , ,. .,.-.,''. '/- .j -" ," "" " "" '

.-'- .II :,g~i , l ,1,d, , ,1,iz, .-.,. ,i .x.. ,.,,.-,., ,4 .,,.,,a. -,. : , ,.. .. ... .'jj.' ; :: " ..:'..,,.-.-" --.._" ." .. ,



two pointers generally do not move once initially

established, unless the structure to which either points to

can be added onto or deleted. The topwindow and ootwindow

pointers, on the other hand, move about the buffer

frequently always remaining 21 items apart (the size of

available screen space for this editor is 21 lines).

Initially, when entering the editor, the topwindow is set to

topbuffer and the top 21 items in the buffer are displayed.

As the user attempts to move the cursor down off tne oottom

of the screen, the topwindow and botwindow pointers are

adjusted accordingly and the new window is presented on the

screen. The window pointers will change frequently during

an average editing session with the obvious restrictions of

the topwindow pointer never "passing" the topbuffer pointer

and likewise with the botwindow and botbuffer pointers.

Although the concept of using window pointers is

simple, it was tricky to implement at ti'aes. The

difficulties resulted from two objectives of designing a

user-friendly system: 1) to minimize the redrawing of the

screen (take advantage of screen memory operations), and 2)

provide for dynamic insertion and deletion of lines of text.

The first objective was negotiable to some extent, but the

second objective was clearly not negotiable.

Screen memory operations permit the screen to appear to

move instantaneously up one line when a line is deleted.

The opposite occurs when lines are inserted. The lines of

"'' 61

0 *



data are inserted and deleted in screen memory only and

actions must take place to ensure the buffer under goes the

same changes. Also, every time a line is inserted or

deleted the window pointers have to be changed accordingly.

Checks have to be made to ensure window pointers do not

exceed their boundaries. Additional lines have to be

printed to the bottom of the screen during deletions.

Multiline entries, where inserts and deletes affect groups

of lines, complicated the matter further.

Three additional global variables (two integer and one

pointer) were required for the implementation of the screen

editor. The integer variables are 'curx' and 'cury', the

current x and y coordinates of the location of the cursor.

The additional pointer is called 'current' and always points

to the structure in memory that corresponds to the line of

text on the screen where the cursor is located. The

management and control of these variables is crucial in the

storing of data in its proper location in memory. The

values of 'curx' and 'cury' change every time the cursor

moves horizontally or vertically, respectively, on the

screen. The structure pointed to by the pointer 'current'

changes every time the cursor moves vertically.

The same complications arise in the management and

control of these three variables as discussed earlier with

the window management. The system must be constantly aware

of these variables and their values to provide a working

62



*editing environment.

rhe justification for making these seven variables

global lies primarily in the fact that many modules must

have access to them and possess the ability to change their

values. They could be declared as local variables, but,

that would necessitate th passing of lengthy parameter

lists between modules. The inherent danger in using global

variables is that their values can be changed by virtually

any module. Careful consideration was used in determining

which modules only needed access to the values of these

variables and which modules needed the capability to alter

their values.

The effective control and implementation of these seven

global variables was the key to the successful

implementation of the screen oriented editor.

Data File Input and Output. Ideally, the method for

handling data files used by the tool is to hide the

implementation details from the user completely. The user

would be required to know only the names of the processes or

parameters, with all file I/O being based on this

information.

The current implementation requires the user to define

filenames and keep track of them as necessary. Upon

completion of creating a new data dictionary definition the

user is prompted for a filename to store the definition.

Safeguards are employed to ensure accidental overwriting of

-- 63



other files does not occur. When updating an existing

definition the user is prompted for the name of the file to

update. After updating the definition the user is offered a

choice of: 1) overwrite the current file; 2) make a

backup copy of the current file before saving the new

definition under the same name; or 3) define a new filename

for the definition. The only option that requires the user

to enter a filename is when defining a new name. The other

options proceed automatically when the response key is

pressed.

Although not ideal, this method of file handling does

provide a working system that appears clean and simple to

the user, yet is flexible and powerful enough to provide

most desirable alternatives for the user.

The format of the flat files generated by the

workstation editor and the database interface software is

shown below in Figure 15.

The first six lines provide important information about

the definition contained in the file. Line 1 contains a

verification code that identifies the file as one compatible

with the data dictionary software. Lines 2 and 3 contain

the phase of the software lifecycle and the category within

that phase. Line 4 is the status line and provides the

status of the definition. It will have a value of 0 if the

definition is unchanged, a 1 if tne definition was changed,

and a 2 if the definition is to be deleted from

6,4



1 -,- 5 Ma 36 13. #
-b, ,,, 2 -- DESI J "

3-- PARAMETER
4 -- 1

*5 -- Mon 5 May 536 13:25 hr's

6 -- Hon 5 May 66 13:32 nrs
Title -- NAME
Data -- mess_parts
Length -- 25
Multline -- 0
Multentry -- 0
Title -- blank
Data --
Lengtn -- 0
Multline -- 0
Multentry -- 0
Title -- PROJECT
Data -- NETOS-ISO

0
0

Figure 15. Format of Flat Files

the database. This status enhances the communication

between the workstation and mainframe, and eliminates the

need for reloading a definition into the database if no

changes were ever made by the user. The next two lines

contain data relating to the time required to edit a

definition. The values are obtained from system calls to

the MS-DOS operating system. These values are stored in the

database and are used to analyze the times required to edit

a definition.

The remainder of the file contains the actual

definition of the data item. The information is store-I in

groups of 5 lines that correspond directly to the storage

, .'. .. 65

" "P -" A, P"-> 1. ' "" - "



structure used in the actual code, as described in the data

structures section earlier in this chapter. The names of

the fields are "Title", "Data", "Length", "Multline", and

"Multentry".

Editor Commands. The commands available to a user

while using the editor clearly have a major impact on the

usefulness of the tool. "Concern for human engineering

dominates the design" (19:163). The minimum set of commands

that will provide a working system include "insert"

characters, "delete" characters, and "save" the text at the

completion of the edit session. Although these commands

provide a working system, more commands were required to

increase productivity and enhance the user-friendliness of

the system.

7The capability of moving the cursor freely to any

portion of the input area is important. The user must have

this capability to view or modify any portion of the file at

any time during the session. Cursor movements by character,

line, or screen-at-a-time were considered essential for the

editor to be of valuable use.

The files to be edited contain three categories of data

items. The first category is single line entries. The

other two categories provide for multiple line entries

within their respective data fields. Facilities were

provided to accommodate the requirement of creating

additional lines as appropriate for these fields.

66

",*, -*** .6 *.

!



on tne design of the editor" (19:163). Editors must oe a'.ie

to handle incorrect commands gracefully. Handling includes

the detection and correction of errors, where possible.

Error handling is provided at the lowest possible level in

the code.

Illegal strings of' characters for filenames and dates

are identified upon their entry. Facilities are provided to

permit the user to reenter the correct information. Errors

in reading from and writing to files cause error messages to

be displayed on the screen with specific information as to

the error, if known. Facilities are provided, when

appropriate, to allow the user to reenter a filename.

While inside the actual editor, illegal characters from

the keyboard are suppressed at the time the key is pressed.

Illegal characters include escape and control codes not used

by tne editor and also characters that are not accepted by

the database management system INGRES (namely square

brackets "[" and "1"). In most cases the bell sounds to

indicate an illegal character.

Other errors that are checked by the tool are those

that relate to the definition requirements and not the

actual codes from the keyboard. An example of this type of

error is verifying that key fields (required by the database

system) are non-empty. The checking is performed when the

"exit" command is requested. Blank key field errors must be

corrected before the buffer is written to a file.

. 7-'-4

-.- - . . . P -,



V 4 q V- 6 I % .N- %,I - .'-.-

System errors, particularly in the area of dynamic

V allocation of memory, are also checked for and haniled at

the lowest possible level. If an error occurs in dynamic

memory allocation during the initial reading of a template

or data file, any memory that was allocated is freed, an

error message is displayed on the screen, and the system

returns the user to the top level menu. Workstations with

126K, or Lore, of memory should not experience problems due

to memory limitations, and therefore memory allocation

errors may be a sign of some other, possibly more severe,

problem with the system.

The form-filling construct of the editor itself

prevented a number of otherwise common errors from

occurring, for example entering characters in the wrong

location or typing characters beyond the length of the

field. Input fields were clearly identified and cursor

movement is limited to only input areas. This was one of

the major reasons that the form-filling format was the

method of choice for this editor.

Communications Interface

The communications interface between computers is an

important issue in the discussion of distributed systems of

any kind. Because there exists software that provides for

the transfer of text files between computers, this component

of the data dictionary system was not assessed further in

this thesis.

69

.. ,-,..



Dataoase Interface Design

The "C" programming language was the language of choice

for the implementation of the database interface software.

This was due, as stated previously, to the fact that the

Ber'<ley version of the database management system INGRES

(that runs under Unix) only supports the "C" programming

language in accessing the database through its embedded

query language EQUEL. Database query languages provide

users with the ability to retrieve information from the

database. Often dataoase queries, in the query language,

can be embedded in other software programs to enhance the

user friendliness and efficiency of database management.

'C" was the only programming language available for this

facility.

The interface software currently only supports the

design phase database (for structure charts). As the other

databases are designed, the interface software required to

support them should be straight forward, based on this code

prepared for this thesis.

The database interface software was designed to

translate a text file containing a data dictionary

definition, generated by the workstation editor, into the

database ana vice-versa. The text file is first read into

memory where it is placed into structures, also known as

records in rascal or Ada programming languages. From memory

the definition is placed systematically into the proper

I* .% 70

a.
a



relations in the database througn the use of tne database

embedded query language. During the reverse process,

definitions are retrieved from the database, placed into

structures in memory, and subsequently written out to a

file.

The format of the text file generated by the interface

software is exactly like the format of tne file generated by

the editor. Tnis facilitates the use of the files in both

locations and eliminates the need for additional translator

software.

The opening menu prompts the user for his desired use

of the tool. The options available are Load a definition

into the database, Retrieve a definition from the database,

Delete a definition from the database (must access the

password), or Exit the tool. Depending on the user's

choice, the names of the process (or parameter) and the

filename are requested. System messages are frequently

placed on the screen to keep the user informed as processing

takes place inside the database. At the completion of the

action the user is informed of the same and control is

returned to the top level menu. The top level menu is the

only location where users can exit the tool other than

aborting the program.

Currently the tool provides operations on single files

(data dictionary definitions) only. Also, at the time of

publication of this thesis, the User is not provided the

'".:'.-.", , -,'-; <.< ' " ".' .: -< .< .-" . -..K .'. -' '=.'. '..- . ' " " ." " "c "~ " ...



facility to performi the operations in the bacxground and

therefore the user must remain with the program Juring the

uploading or downloading operations.

Sumkm.ary

The highlights of the design and development processes

of the data dictionary system were presentea in this

chapter. What follows in Chapter V are discussions on some

of the key implementations issues and the testing processes

used in this project.

I. . 72

"..-::::.

|*



V. Implementation and Test

There are three areas that merit discussion that relate

specifically to the implementation of the software. The

portability of the editor and the generic implementation are

the first two areas discussed. A brief description of how

the system operates is the third area. The last section in

this chapter focuses on the testing phase of the software

lifecycle and how testing was performed for this system.

Portability of the Code

Every effort was made to use standard C-language syntax

and library functions to enhance the workstation editor's

portability between environments. System calls to MS-DOS

were kept to a minimum (two eacn) to reduce the dependency

of the software to that operating system. Modifications to

the code, with respect to these two areas, should be minimal

when transporting it to other machines.

The hardware dependent software is contained in a

separate library of code. This library is linked with the

remainder of the code ,o produce the working editor for the

Z-100 microcomputer. The primary functions found in the

library are those that address screen memory operations.

Fhese functions are dependent upon a 24 row X dO column

video display and the distinct codes sent from the keyboard

and to the screen that are unique to the Z-100. rhe Z-100

'73

.eA -



is especially well equipped in providing easy access to

these operations. The functions must oe analyzed to

determine necessary modifications for other macnines. The

code was modularized to the extent possible to enable

modifications to be made with minimum difficulty.

Preprocessor define statements were employed to the extent

possiole to permit easy access to the codes that drive the

editor operations. A configuration file of this nature is

required for any destination machine for which the tool is

targeted.

The "C" software written for the mainframe computer

(under Unix) contains no specific calls to the Unix

operating system. The embedded queries to the database are

basic queries in that they follow specific examples in the

documentation. Although recompilation of the code will be

necessary, the database interface software should interface

with the version of INGRES running under the VMS operating

system with minimum modifications.

Some costs were associated with the efforts to keep the

code portable to other computers. Designing the code for a

24 line by 80 column screen eliminated the option to employ

the 25th line available on tne Z-100 screen. This line

could have been activated and used to present the

information currently shown at the top of the screen. This

line is not affected by line insertion and deletion or any

other scrolling operations. Because this line was not

74



available, redrawing the screen was necessary when attemipts

were made to move the cursor beyond the top or bottom of the

screen. Other coding methods may have resolved portions of

this problem but they would have required significant time

to implement. Paging commands that scrolled up and down 16

lines in the buffer and quick movements to the top and

bottom of the buffer were provided to minimize the need for

redrawing the screen. Other niceties such as color and the

convenience of the keypad were not not considered since

these two items are not provided for on many types

computers.

Generic Editor implementation Issues

rhe configuration of the ouffer structure used in the

editor code provides a facility to handle a variety of data

- dictionary definitions. Any number of different templates

can be created and used with this editor with the oasic

restrictions being the length of the title and data fields.

The original code was developed using the data

dictionary definitions associated witn the design phase,

structure charts in particular. After the initial

integration of the editor software with the mainframne

software was completed, templates for the code phase data

dictionary dofinitions were generated. The stubs for the

code phase in the original code were replaced by calls to

modules that loaded these new templates when requested. All

ecitor cowaands were successful in editing these aefinitions

75

.....-. . *....* . * .* .i

.- ' , .- ____ ~ ~ ~ ~ *..y- ~ - . ;c.A .. i........................................



with one exception. The definition of a moaule contained a

"*i **" multiline entry as the last line in the buffer which was not

previously required for the design phase definitions. ,linor

modifications to the "delete line" module were necessary to

handle this additional requirement. The definition of a

variable required no modifications. Tne definition of tnis

structure was the single most critical element in the design

of a generic editor.

Operation of tne Tool

A brief overview of the operation of the system is

presented below. A complete users' manual is located in

Appendix D for the interested reader.

The workstation editor is activated by the user
-' entering the name of the program at the MS-DOS system

prompt. The date is requested, wnicn remains in memory for

the duration of the session. The initial menu presented to

the user requests the user's purpose for using tne tool: 1)

CREATE a new definition, 2) UPDATE an existing definition,

or 3) EXIT the program. This is the only location where

the user can exit the program (other than rebooting the

system). Standard interrupts such as 'CTRL C' are not

recognized by the system.

If CREATE is chosen, the user must identify the phase

of the joftware lifecycle (Requirements, Design, or Code) at

the next ;ienu. The third, and final, menu presented to the

user requests the user to identify the category of data

76

%'



dictionary definition (for example, Process or Parameter in

the Design phase). After this decision is made the system

reads in the appropriate buffer template from a date file

and places the empty template on the screen ready to accept

editing commands from the user.

If UPDATE is chosen, the user is requested to enter the

filename of the data dictionary definition to update. If

the filename is found the file is loaded into memory and the

user is placed into the editor with tne definition visible

on the screen. If the file is not found the user is

notified of the error and control is returned to the main

menu.

At the top of the screen there are four locations where

the result of menu choices and the current filename, if an

UPDATE operation w~s chosen, appear to keep the user

informea of his current status at all times.

The user signals the end to the editing phase of the

session by executing an EXIT or QUIT command. Once the

specifics of this operation are completed, control returns

to the top level menu.

The definition files created or updated by the editor

are then transferred to the central computer by the Kermit

communications program or any other program available to tae

user. The database interface software is activated by

entering the name of the program. Menus prompt the user for

the desired activity- upload a definition to the database,

77



retrieve a definition from the database, or delete a

definition fror -he database (requires a password). The

system either reads a definition file designated by the user

or writes a definition out to a file designated by the user.

Files are transfered back to the workstation in a manner

similar to the method used to get them to the central

computer.

Testing

The testing process of large computer programs

incorporates, on the average, 30-50k of the effort (4:7).

This large percentage indicates that the testing of software

is an important part of software development and the time

allotted for it should not be underestimated.

Testing is generally defined as "the process of

executing a program (or portion of a program) with the

intention, or goal, of finding errors" (30:172-173).

Testing is often confused with deougging, which is generally

defined as determining the cause of the error and correcting

it. They are closely related as the output from the testing

process provides the input for the deougging process.

Testing of the software should occur throughout the

development process. The earlier testing takes place the

better, since errors found in the late stages of the process

have proven to oe more costly than those found earlier (33).

lhe categories of testing differ, depending on the location

in the developnent process. The following paragraphs

78



describe tie different categories and how each was

incorporated in the development process of the data

dictionary editor and associated software.

Incividual module testing took place whenever possible.

Small test programs were frequently generated to test

unfamiliar aspects of the C-language, as well as verifying

the correctness of algorithms employed for various

functions. Once a module was sufficiently tested to be free

of errors it was tagged as ready for incorporation into the

next phase of testing.

Integration testing followed modular testing as modules

became available. Once the minimum set of modules for a

functional editor were ready, the modules were integrated

and tested as a system. After the basic foundation of the

editor was tested, enhancements to the editor, in areas sucn

as screen displays and editing commands, were individually

tested (when possible) and integrated into the editor one at

a time. The editor software was again tested with the

enhancement installed.

This procedure proved to be a very efficient method for

building a working system from an established, working

foundation. Each module was integrated into the editor with

the confidence that all existing software was correct.

klthough it did occur, it was not common to find errors in

tho existing code that were previously overlooked.

Regression testing involved the retesting of the

.4".

79

.7.



software after an error was found and corrected. How ,iucn

* %'. retesting was required depended Drimarily on how much code

was affected. As errors were found in the later testing

phases, regression testing was required to identify

additional errors that resultea from the effects of the

updated software.

Topdown testing focused on the control program, the

data flow, and the control flow of the software. Test stubs

were used frequently to verify correct flow of cont-rol

between modules. This testing method was employed in

conjunction with integration testing.

Once the editor code was complete, acceptance testing

of the system was performed. The results of this testing

phase are included in the following chapter on Evaluation.

In retrospect, it was clear that the systematic

approach to building a system on a sound foundation, one

block at a time, enabled the tool to be developed smoothly

and efficiently with a high degree of confidence in its

performance. At only one point, in the latter part of tne

code phase, was there any significant debugging delay. That

delay occurred during some integration testing of the editor

software. It would be hard to predict how much longer it

would have taken to produce the same quality of software nad

the above procedures not been followed.

30

wi

.. ' .'''.: ',;,2 , ': - .<€ .-'-, ;.. .'''. .' " ." . . ..... -'Z . ...-



S u mmary

This chapter presented the significant factors that

resulted from the implementation of the code. Testing was

discussed to the extent tnat it was applied during the

implementation phase. Validation testing was not performed

to the extent of employing a separate group of people to

execute the program with the intent of finding errors.

Evaluation of the workstation editor was conducted by a

group of 24 persons, however this evaluation focused on the

user-friendliness and usefulness of the program as apposed

to validating it. The following chapter summarizes this

evaluation by a subset of the target user group.

61
4%



I I Evaluation of the Data Dictionary Eaitor

It is _mportant to provide systems that are

user-friendly and perform a useful service to increase the

productivity of information systems (3:530). The subject of

measuring user satisfaction will be discussed in this

chapter with particular attention being paid to the

background and justification for the tool chosen for this

evaluation. Tne data dictionary editor for the Z-100 was

evaluated by one faculty memoer and 22 graduate students

curren.ly enrolled in the computer engineering or computer

systems program at AFIT. The results of this evaluation

will also be presented.

Measuring User Satisfaction

Measuring a user's satisfaction with any degree of

statistical proof of validity has proven difficult. Bailey

and Pearson (19d3) performed extensive research on the

subject of measuring user satisfaction with information

systems (3). The results of their research indicated that

many such evaluations had been performed but none had

established any standard of measure for which to analyze the

evaluation results (3:530-1). Questionnaires used asked for

numerical responses to questions without providin- a place

for tnc user to justify their response. There was little

eviaence as to why specific items or factors were chosen for

62
*.d .' .€ . € .. .. •. . . . .. . . .. . . . . . . .



.,he various questionnaires. In addition, there were
*, .% _

discrepancies as to researchers' opinions on factor

importance in measuring user satisfaction. As discussed by

Bailey and Pearson, these problems clearly showed a need to

establish

a definition of satisfaction which contains a complete

and valid set of factors and an instrument which
measures not only the user's reaction to each factor
but why the respondent reacted as he did (3:531).

A formula for defining user satisfaction as "the sum of

the user's weighted reactions to a set of factors" (3:531),

was developed by Bailey and Pearson. In it, R is the

reaction to factor j by individual i, and W is the

importance of factor j to individual i. This equation

Wsuggests that one's opinion of satisfaction is the sum of

his or her positive and negative reactions to a particular

set of factors.

Bailey and Pearson conducted extensive tests in an

attempt to identify all factors that people considered

important in measuring satisfaction. They reviewed

twenty-two studies to arrive at an initial list, and tested

its completeness and accuracy by consulting data processing

professionals and middle manager users in 8 different

organizations. Critical incident analysis techniques were

used for these tests. A list containing thirty-nine factors

ranging from flexibility to vender support resulted.

To measure a user's perceptions of these factors,

83

1. .-Ze6



Error Recovery. The extent and ease with which
IVA the system allowed you to recover from user induced

errors.

unforgiving _ forgiving

incomplete_ _ complete

complex _ simple

slow fast

unsatisfactory satisfactory

To me this factor is
unimportant important

Commnents:

Figure 16. Sample Survey Question

Bailey and Pearson used the semantic differential technique

(3:333). Four bipolar adjective pairs ranging from negative

to positive feelings were identified for each factor.

Additional scales were included to test the internal

consistency and validity of the four pairs, and to obtain a

value for the weights users assigned to each factor. A

seven-interval scale was adopted to measure the user's

satisfaction with each pair. Figure 16 shows a sample

questio (or factor) that was taken from the actual

questionnaire.

Numerical values were assigned to each of tne seven

84

. • . , - . ••. . .- .. - • - • . - N. -2• . . -.w - . -x . . . ...-°- ,,. - . . . . ..* •



intervals ranging from -3 to +3. The impcrtance scale was

assigned values from 0.10 to 1.00 in increments of 0.15.

The higher the value the more important the factor. The

overall satisfaction was measured by
s4

where W = the weight assignea to factor j by user i, and I

the numeric response of user i to adjective pair k of factor

j.

The results of this equation can be deceiving if a user

rates half of the factors very high and very important while

rating the remainder neutral and very unimportant. The

numerical result would be approximately one-half of the

total possible (60 out of 117) indicating a moderate degree

of satisfaction when in fact the user was extremely

satisfied. Normalizing the scores and filtering factors

whose top four adjectives pairs were all rated at 0

eliminated this problem.

Extensive reliability and validity tests were conducted

by Bailey and Pearson on their measurement tool (3:535-537).

"Reliability is defined as the absence of measurement error"

(3:537). The reliability coefficients calculated for each

factor were found to be very high (average of .93, minimum

of .75). The authors concluded that their questionnaire was

reliable.

Three categories of validity tests were performed to

determine if the questionnaire measured what it was designed

65
a.]

b5b



Normalized Score Translation

VA +1.00 maximally satisfied
+0.67 quite satisfied
+0.33 slightly satisfied
0.0 neither satisfied or dissatisfied

-0.33 slightly dissatisfied
-0.67 quite dissatisfied
-1.00 maximally dissatisfied

Figure 17. Score Boundaries for Normalized User
Satisfaction (3:535).

to measure. These types of tests considered were content

validity, predictive validity, and construct validity.

Content validity implies that all aspects of the
attribute being measured are considered by the
instrument... Predictive validity implies that the
instrument is consistent and agrees with otner
independent measures... Construct validity implies
that the measurement instrument performs as
expected relative to the construct of the
attribute being measured" (3:535-6).

The results of their tests indicated that their instrument

was valid.

As a result of their extensive investigation and

analysis, Bailey and Pearson concluded that they have an

effective instrument for measuring average levels of user

satisfaction. The normalized scores for each user provide

thi3 data. A normalized score ranges froiri -1.00 to +1.00

with the translation of scores shown in Figure 17.

86

N"-



E'valuation of the Data Dictionary Editor

A graduate level software engineering class containing

students studying computer systems or computer engineering

were targeted for the evaluation. Although they were not

knowledgable in database management systems and were

currently learning about the software development lifecycle

and data dictionaries, it was determined that they would

still provide valuable feedback in an evaluation of the

human-interface, or user-friendliness, aspects of the data

,* dictionary editor.

I'
The class was briefed by the author on the overall data

dictionary system and the editor's place within the systei.

Each student was provided with a copy of tne questionnaire,

a users' manual for the editor (Appendix B), and a set of

instructions outlining the steps necessary to execute the

tool and obtain a hard copy of the data definition file

(Appendix D). Two Z-100 computers were set aside in one of

the school labs for their use.

Many factors identified by Bailey and Pearson did not

apply to the evaluation of the data dictionary editor and

were not included in it evaluation. Examples of tnese were

vendor support and management factors. rMailary, in a

previous thesis effort (25), added several factors to the

list that provided greater emphasis on the human-computer

interface aspect of software tools. The list was extendea

by one more factor, for this evaluation, that covereu the

37



User Number Normalized Score

19 0.977
8 0.814
18 0.704
5 0.680
2 0.662
7 0.660

13 0.602
17 0 593

6 0.593
4 0 .586

11 0 577
q 0 . 546
9 0.520

15 0.517
21 0.493
1 0.478

23 0.466
12 0.430
22 0.395
16 0 .382
10 0.351
14 0.210
20 0.140

mean for all users : 0.538

Figure 18. Normalized Values Overall Satisfaction
by User

area of error prevention. The complete survey used in the

evaluation of the data dictionary editor is included in

Appendix C.

The completed surveys were returned one week after they

were issued. The average time to complete the evaluation

was 37 minutes. The results were analyzed with the

norra.lized scores for each user shown in Figure 16.

...................................... -22



AD-A172 466 DESIGN OF A DATA DICTIONARY EDITOR IN A DISTRIBUTED 22
SOFTUARE DEYELOPMENT ENYIRONNENT(U) MIR FORCE INST OF
TECH URIGHT-PATTERSON AFI ON SCHOOL OF ENGI.

UNCLASSIFIED J U FOLEY JUN 86 AFIT/GCS/ENG/86J-5 F/0 9/2 N

I KsoEEEEEohmomhhh~hh



46 12.81 12.
136

4 L

IIIJIL8.

df



-. : AJ% A- y Pi - . - o. I. j' Wr .

The user number represents an aroitrary number used for

accounting purposes only. These results indicate that the

users were satisfied with the editor. The mean scores for

each of the 11 factors and the mean overall satisfaction

from question #12 in the survey are shown in Figure 19 (max

score is +3.0, min score is -3.0). The mean score for each

factor was obtained by first averaging the score of the

first four adjective pairs for each user, then averaging

these scores for all users.

Factor Number Mean Score

1 2.13
2 1 .85
3 1 .57
4 1 .51
5 1.61
6 1.62

7 1 .83
8 2.30
9 1.79

10 1 .84
11 1 .74
12 1.91

Figure 19. Mean Scores for Each Factor.

Question 3 received the highest score which indicates

that the users were pleased with the ease-of-learning aspect

of the editor. Error prevention and recovery (questions 3

and 4 ) received the lowest scores. Two bugs were discovered

* during the evaluation which directly affected these marks.

$9



The single aspect of the editor most often complained

about (13 users) was the redrawing of the screen when the

cursor attempted to move beyond the top or bottom on the

screen. "The redrawing of the screen was torally annoying

to me" was one user comment. This reaction was anticipated.

The objective to keep the editor generic eliminated the use

of the 25th line associated with the Z-100 screen. This

line is not affected by scrolling operations and could have

been used for the information window that currently is at

the top of the screen. It is interesting to note that only

one user specifically commented on the usefulness of the

information window, although 3 other users made favorable

comments about the display of information on the screen.

JSeven users commented favorably on the ease-of-learning

aspect of the editor, which reinforces the results of that

factor shown in tne previous figure (number 6). "I sat down

and immediately wrote my data definition -- very easy to

use" was one user's perspective.

Five users complained about the lack of an

*" insert/delete character command in the editor. Having to

retype the entire line of text for a single character change

was a bother to theia.

Five favorable comments were made about the compactness

and usefulness of the on-line help screen, "You seen to have

enough help not to get in my way but to be useful". One

user added a recommendation to provide a help screen for the

90

U . - -. - ' -.. . -. . . ,, .,, , . .. : . ..



initial menu as well.

Three users recognized an immediate need for the editor

to support other related classroom and thesis work and

expressed a desire to use it.

A variety of other comments were made that are worthy

of mention despite only being addressed by one or two users.

One user recognized a limited usefulness of the editor since

it only handles single files rather than multiple files and

records. One user, who had some experience with previous

versions of the data dictionary interface, indicated that

this editor was a vast improvement over the old system. One

user complained that a directory listing was not available

from inside the program. Two users desired more explicit

error messages be displayed rather than just the computer

beeping when an illegal character or comaand was entered.

One user was not sure what this editor did that a word

processing program could not do. One user commented

favoraolv on the ability to move freely about the ouffer to

enter the definition.

Conclusions

The overall normalized measured satisfaction mean of

0.536 generated by the formula presented, coupled with the

user assessed satisfaction mean of 1.91 from question #12,

and the fact that there were no negative mean scores for any

single factor indicate that the data dictionary editor was

well received by the users. Enhancements are certainly in

91



order to make the environment better, particularly in

* reducing the redrawing of the screen.

It is important to emiphasize the point that this

evaluation was limited to the editor only, and not to the

overall system. in this respect the actual usefulness of

the editor, as it pertains to the entire system, could not

be measured.

, .:...

92---.-5..



VII. Conclusions and Recommendations

Conclusions

A data dictionary system was researched and designed

specifically to support the AFIT distributed software

development environment. The system was broken down into

*three separate but related subsystems, namely the

workstation, the communications links between computers, and

the central computer.

A special data dictionary editor was designed and

implemented on a prototype microcomputer workstation. It

was designed under the constraints of being generic and

portable to other workstations. The generic oojective was

achieved, as the editor demonstrated its ability to handle

code phase definitions after uesign phase definitions were

used for the original implementation and testing of the

software. The portability of the software to other

workstations was not tested.

Twenty-three users evaluated the user-friendliness of

the editor and were satisfied with its implementation. This

level of satisfaction was based on a normalized mean score

of 0.333 on a scale of -1.0 to +1.0 where the higher the

score the more satisfied the user was with the system.

Although the previously designed interface to the data

dictionary was not evaluated by the same standards, the new

interface is believed to be a major improvement based on the

93



enhanced features, such as screen oriented editing and error

S checking. Editing time should be reduced with increased

accuracy. Data definitions templates for particular

projects can be created by the user to provide an even more

efficient system.

Comparisons of system response time cannot be based

solely on the editing times. Total response time for the

distributed data dictionary system includes the time

required to transfer files between computers. This requires

additionaly resources (communications links, communications

software) and time that the earlier versions of the system

did not. How the overall systems compare in terms of

overall response time will not be known until such

evaluations take place.

The communication links of the system were not

addressed in detail in this thesis. This was because

communication software was already available for use and did

provide all the requirements for this first implementation

of the system.

The database interface software was designed and

implemented on the Vax-11/780 computer under the Unix

operating system. The Berkeley version of the INGRES

database management system was the host database for the

data dictionary definitions.

A great appreciation was gained fur the concept of

user-friendliness, particularly its wide variety of

]"" 94



VT -1%- 7 _7 W_ . d

definitions. Wha is user-friendly to one person is not

necessarily the case for others. Making design decisions to

accommodate anticipated desires for the best environment was

based on research conducted and presented in the literature

review chapter. The additional constraints placed on the

system, as a result of the goals of a generic and portable

system, proved to be costly as brought out by the evaluation

of the editor.

A great appreciation for the design and development of

large (relative to personal experiences) software

development projects was achieved. rhe software lifecycle

demonstrated its validity more than ever before.

Much was learned about the workings of the Z-100

microcomputer and the MS-DOS operating system.

I. Specifically, controlling the keyboard and manipulating

screen memory of the Z-100 was enlightning.

A great appreciation was gained for the efforts

required to write an effective screen oriented editor.

Experiencing the power of linked lists, understanding

editing environments and how fast editing code grows were

all educational.

95



- - 77 .77 07 %'W .%

Recommendations for Further Study

hEnhancing and expanding the editing environment on the

workstation are needed. Improving the rough areas, as noted

in the evaluation, and implementing additional commands

would be beneficial. Expanding the capaoilities of the

editor to handle multiple files is necessary. Porting the

editor code to other workstations is desirable, including

the more sophisticated workstations in the laos (for

example, the Sun workstation) and the IBM compatible family

of comnputers since such a large numoer of potential users

own these types of machines.

Enhancing the database interface software is needed.

The interface needs to be enhanced by providing batch and

background processing. Expanding the interface code to

handle the other phases of the software development

lifecycle is also required.

The communication interface between the workstations

and the central computer needs to be integrated into the

system more effectively. A totally integrated system is

desirable, ana correspondingly more complicated to design.

A significant area of the data dictionary system that

nas not been addressed to any depth is the database

administration environment. The ability to effectively

control and manage the database is often discussed (as in

this thesis) out "as not, to date, been implemented for this

or previous versions of the daita dictionary system. 'This

96 1

4



topic needs attention ana will provide a great service to

the system once it's implemented.

The data dictionary system designed in this thesis

needs to be evaluated, in its entirety, by users who employ

its services over an extended period of time. Only through

this evaluation will the effectiveness and the usefulness of

the design be measured.

.4

971



* ~ Appendix A

"valuation of an Automated/Interactive Software

Engineering lool to Generate Data Dictionaries

This appendix contains a summary and evaluation of the

original tool designed to automate the generation of data

dictionaries. The comments reflected here are based

primarily on the author's personal experience with tne

system. The original software was implemented oy Thomas

(39) and later modified and improved by Hamberger (16).

This evaluation took place while some of' the modifications

were being implemented and, hence, may not reflect all of

the latest updates to the system.

The System Description section describes the objectives

of the tool, the environment the tool was designed to

* function in, and identifies the target user group of the

tool. The Documentation section identifies all available

documentation for the tool. The Human-Computer Interface

3ection contains the results of the evaluation performed on

the tool. The Conclusion contains a summary of the

prevaient strengths and weaknesses of the system.

System Description

The objective of this software tool was to assist

program designers generate data dictionaries in support of

other software development documentation efforts.

A 1



Tne tool ran on the lax-11/730 under UNIX. witn tne

"erkeley version of the IGRES relational dataoase

management system. It was written in the C programming

language with the INGRES embeddled query language EQUEL.

The tool was designed to support multiple phases of tne

software lifecycle including SADT's, Data Flow Diagrams,

Structure Charts, and actual code. Specific requirements

for the system were taken from the Software Development

Guidelines and Standards (37) published by the AFIT School

of Engineering's Department of Electrical and Computer

Engineering.

The target user group was students at AFIT pursuing a

masters degree in some area of computer systems or

engineering. The tool obtained information from the user

primarily through direct input from the keyboara with a

sm:-all set of data obtained through analysis of' the existing

database.

Specific abilities the tool claimed to perform include:

Functions I terns Categories

* Input * Action SADT
* Retrieve * Data Structure Chart

Delete C Code
AIodify

Only those items marked with an asterisk have oeen fully

implemented and were available for evaluation.

A'. 2

.4"...

S.~* *.% * .*.* *... . . . . . . . . . .|

~ . * .. * * J .-. * .. * * * . - **********.]



Doc u:.e nt at ion
Tnis tool was originally conceived as a class project

by a grcup of graduate students, and later modified and

expanded as part of a mnasters degree thesis effort at AFIT

(39). In that respect, the only written documentation for

the tool was the thesis itself. Although the thesis did

include information on the genesis of the design, the

relations in IIGhES originally created, and other

information generally included in thesis reports, no user

.nanual of any kind was ever written.

The system, was advertised as a straight forward

"question and answer/fill in the blank" tool. The

information requested by the system generally followed the

standards and guidelines published by the Electrical and

Computer Engineering department and the user was expected to

be familiar with these guidelines prior to executing the

tool. No on-line help was available.

The source code for the entire project was available

(approximately 15C pages). Each moaule of code had a module

header of which there existed no entries. Comments within

the code itself were almost nonexistant.

Human-Com uter Interface

The human-computer interface was the primary target for

evaluation. A host of attrioutes exist that are used to

characterize a "friendly, effective, efficient"

human-computer interface. This tool's evaluation was based

.-. ::-:.{.Kc>§:&



on the attrioutes described below.

Response Time. Response time is generally defined by

how long it takes the computer to react to user input (10,

27).

The original implementation of the data dictionary tool

ran interactively with INGRES. After a small amount of

information was input by the user, processing by the user

stopped and processing information into INGRES commenced.

Only after the processing of information to INGRES had

completed did control return to the user for further input.

Interfacing with INGRES was a time consuming process by

itself. Coupled with a user-loaded system, INGRES interface

processing time increased dramatically. The result was tnat

S the user spent the majority of the time at the terminal

waiting for the computer to process information into INGRES.

The user got bored, frustrated, and wasted a significant

amount of valuable time. Typical time requirements for each

interaction with INGRES, in a heavily loaded system, were on

the order of minutes.

A recent modification to the tool consolidated all

interaction witn INGRES to the beginning or end of the

editing session. This improvement reduced the numerous

frustrating delays at the terminal but the time required to

interface with the database did not change.

An additional option the user had, as a result of a

recent modification, was the ability to update multiple

A- 4



existing definitions. The system retrieved from tne data

base as many definitions as the user requested. The time it

took to retrieve them is directly proportional to the number

of definitions, but, all of the interaction witn INGRES was

performed at one time. Once the definitions were retrieved,

the tool allows modifications to be made. Only after all

tne modifications have been made to all requested

definitions did the tool interface with the database again

to delete the old definitions and restore the new

definitions.

Regardless of the time of the interfacing with the

database, there remained the requirement for the user to

wait for the processing. This slow response time was the

most significant drawback to the system.

Methods of Input. There are a variety of methods

employed by software systems to generate input from the user

(1, 10). Tne manner in which this tool obtained information

from the user was a combination of menu selection and text

entry.

The manner in which text entries were made was far from

stimulating. it consisted of a routine of typing in single

entries or lengthy phrases at the bottom left corner of the

screen. Earlier versions of the tool had entries scroll off

the top of the screen as new inforwation was entered at the

bottom. Recent modifications required one input itekn per

screen with that item disappearing as a new request for

A - 5

%I



input was presented.

Once the user reached the third or fourth input screen

there was no information provided as to wnich project or

module name was being entered. Experience showed tnat most

students who used the system sat at the terminal only when

they were prepared to input several definitions into the

database. Since data dictionary definitions usually include

10 - 30 lines of information, users sometimes forgot which

item they were entering into the database. Only auring

certain requests for input did the current implementation

provide information as to what project and module name was

being entered.

Psychological Closure. Breaking lengthy input

processes into parts provides the user with positive

feedback through a feeling of accomplishment and success.

This is what James Martin (27) refers to as psychological

closure. The overall lengthy delays in response time

seriously detracted from the user's ability to achieve

psychological closure.

Generally, lengthy textural descriptions were entered

early in the input process. This required the user to spend

a large amount of time inputting large textural descriptions

before he or she was certain that the information typed

actually entered the system. This prohibited the user from

achieving that critical initial confidence in the system.

Another problem that detracted from the user's ability

'F.

A- 6



to achieve psycnological closure is that the information

requested by the system was not necessarily wnat the user

expected. This topic is addressed in more detail in the

next section.

One significant improvement, in the latest version of

the tool, provided messages on the screen indicating exactly

what the computer was doing when information was being sent

to and from the database. This provided the user with

important feedback and reduced the users' anxieties that

frequently accompany empty visual displays.

Expectations From the Tool on Information Requested.

The information requested by tne program differed slightly

in format and terminology from the the published guidelines.

Doubt was created in the user's mind when attempting to

interpret queries from the program correctly. Doubt was

also manifested when required data was ommitted from the set

of queries when, unbeknownst to the user, this data was

extracted directly from the database. This exemplifies the

importance of keeping the user informed. On-line help

facilities or messages would assist in reducing some of

these problems.

.Error Checking and Recovery. Error checking facilities

are quite useful and reduce many potential problems when

users are expected to type large amounts of input from the

keyboard. If the errors can be identified and corrected

AA................................................... 7..



before other dependencies are ouilt upon them, then the

system will perform with more reliablility and efficiency.

Experience has shown that certain symbols on standard

keyboards are not accepted by INGRES (for example, square

brackets "[]'). When these symbols are entered, INGRES

returned an error to the screen and the user was left in

doubt as to exactly what information "made it" to the

database, if any at all. fhese types of errors were not

screened for by the tool.

When inputing textural type information, the screen

indicated with "guides" the maximum lengtn of the input

before a RETURN was required. When the user typed beyond

tnese "guides" a variety of things happened, none of which

were desirable, and most of which were unrecoverable. An

analysis of the original code indicated that no error

checking capabilities were included for this particular

problem.

Another type of entry considered to be an error was a

blank entry entered for a key field (for database purposes).

The system readily accepted blank entries which could lead

to problems when storing the information in, or attempting

to retrieve it from, the database.

A variety of wrong keys were pressed at the various

menu displays. The tool correctly handled all standard

characters and strings of characters that were entered, in

that a message was displayed to the screen and another

"" A -
, X



opportunitj to enter a correct alternative was made

available. Escape and control characters, however, caused

the system to do strange things -- all of which were

undesirable.

Visual Display of Information. The quality of

presentation of information can have a substantial impact of

the acceptance of the tool by users and can arouse an

interest in its function. Any human-machine interface has

an inherent objective of being easy to use and stimulating

to the user. If the user does not enjoy using the tool, he

or she will avoid using it (10).

Overall, the visual display used by this tool was

unappealing. The ineffective use of the entire screen,

margins and white space, and cursor positioning seriously

detracted from the friendliness of the system. For examnple,

a significant annoyance was the entering of information,

line-by-line, always beginning at the lower left corner of

* the screen, with the entire screen scrolling up as each new

line was entered.

Favorable Aspects of the Interface. The items observed

tnat were effectively implemented, as determined by this

author, are listed below.

1. The interface did follow consistency
guidelines for most of the input routines. rhe
user quickly adapted to the methods used to input
data and became comfortable in anticipating system
prompts.

A - 9

*p.



2. After a complete definition was entered the
user had the option to review and modify the entry
prior to storing the information in INGRES. This
was a major improvement from earlier versions of
the tool where once the data item was typed on the
keyboard there was no way to modify that
information.

3. Although response times were long (as a
function of the system, INGRES, and other items)
the latest version of the tool provided what
comfort it could by printing messages to the
screen to keep the user informed as to the status
of the processing.

4. Error checking at the Menu selections was
implemented and effective in protecting the user
from making unforgiving mistakes.

Recommendations for Improving the interface. Tne major

areas recommended for improvement include the following.

1. The single biggest problem with the system was
the long response times. This time must be reduced
for the tool to be of any use.

2. It is necessary to keep the user informed on
- what data dictionary item is being input into the

dictionary. The project name and tne module or
variable narue should appear on every screen once
they are entered. They should appear in the same
place ana highlighted in some way so as to be
easily recognized.

3. Methods of error checking, and possibly
correcting, should be incorporated to reduce the
potential for error. This includes, at a minimum,
scanning for entries that INGRES does not accept,
blank entries for key items, and accidently typing
beyond guides.

4. The visual display of information needs to be
redesigned to provide a more active and
stimulating environment for the user. "Blank form
filling" should be considered for inputting groups
of single word entries.

5. To achieve a faster psychological closure in
users, a short set of information should be
requested by the tool early in the session with

S""A - 10



'I

• tae lengthy algorithms and text descriptions
coming later. This will give the user a quioker

. ~feeling of confidence in the systeW.

6. A delete option is offered to the user when it
may not be desiraole. :asual users should,
generally, not have permission to remove
definitions from the database -- only modify them
as needed. Removal requests should be directed to
the database administrator, or instructor as
appropriate.

Conclusions

Sstem Strengths. Basically the tool performed one of

its main objectives successfully -- that objective oeing to

support the code phase of the software lifecycle.

The system was advertised as a straight

" forward/fill-in-the-blank tool with no need for any

documentation as to how to execute the program. This claim

held true for the most part, in that most 3tuoents had

little trouble properly executing and using the tool.

SstemL Weaknesses. The majority of the system's

ooJectives were not achieved. 7ne system performed too

slwly and was too cumbersome to use to oe of any great

value to students. The other major objectives of the tool,

that incluae supporting the other phases of the software

lifecyclp, have not been successfully impienented. it

should be noted that once an effective interface is designed

for one phase and tne time delays are oubstantially reduced,

then imaplementing tne other phases of tne lifacycle are

straightforward.

.'i - 11

a°



Tne genesis of this project, it appeared. led to so,.e

of the major difficulties in its implementation. A number

of students were involved in the original design, with a

later thesis effort dedicated to "patching things" to a

workable state. In all fairness to the original design, a

number of very valuable lessons were learned in the analysis

of the problems resulting from its implementation that would

never have been learned otherwise. For instance, trying to

store all information about every data item or action was

found to be a very complex and difficult task. The

complexity is especially prevalent when attempting to

maintain relationships between items.

The time required for a user to enter information into

the database needs to reduced. Tnis time factor includes

time required to enter user information to the system and

tirrie required to interface with the database.

Large tile delays occurred in entering information wnen

the computer is loaded witn users. During normal duty hours

tnt Vax-11/7O computer usually felt this load. One

alternative to overcome this problem is to distribute the

processing of information over multiple machines. For

instance, the user could enter data dictionary entries on a

personal computer (PC) or a workstation and down load the

results of the input to the Vax when it is convenient for

the user. Mult-ple entries can be made on the workstation

and the overall time saved would be significant with user

A 12



anxiety and frustration levels being substantially reduced.

,he s.econd time factor centers on how the izfcrmation

is storea in the actual database. There are three types of

internal storage structures that INGRES supporcs: heap,

indexed sequential access method (isam), and hash (10).

Generally, heap structures are the least efficient of the

tnree, which just happens to be the type structure used in

the database supporting this tool. In heap structures

duplicate tuples are not removed and nothing is know. about

the location of the tuples. As a result, retrieval times

arp directly proportional to t ,e size of the relation. The

other two types of storage structures are raore sophisticated

and produce more efficient results when queried. These

alternative methods need to be tested and evaluated to

determine if access times can be reduced.

Closely associated with storage structures used in the

database are the methods used to manipulate, or query, that

data. Specifically, the two more sophisticated storage

structures support more complex relational algebra. In the

current implementation of the code very simple relational

algebra is used to retrieve information from the catabase.

.* As the storage structures are modified, so should the

relational algebra used to access the data.

A -13

..' . ki .K 1 ~>~ ~ -** : --.. .- 2



User's Manual for the Data Ditionary Editor

on the Zenith Z-1O0

Starting the Editor Program

1. Turn the pover to the computer on (switch on left

rear of machine).

2. At the MS-DOS system prompt enter "ddedit" and

press RETURN.

3. The editor title slide will appear on the screen

and you will be asked to enter the current date. You must

enter a valid date before you will De permitted to continue.

After entering the date your will Degin your magical mystery

tour through the land of the data dictionary!!

4. Menus will follow on the next several slides. The

first menu proviies the options of CREATing or UPDATing a

data dictionary definition. If a data definition file is

stored on a disk then updating this definition is possible.

To create a data definition from scratcri CREATE is the

proper choice. Traversing between levels of menus (up and

down) is provided.

a.) CREATE. Should the create option be selected

the user will be provided with two follow-on menus, the

* first asking what phase of the software lifecycle is

desired, and the second asking what category of definition

within that phase (either an action or data item). The

B-I



tnree phases on the enu are the Requirements Analysis phase

p.. (SADT diarams), Design phlase <&ructure Chnarts), or Code

phase. As the selections from the menu are made tney appear

on tne top line -f the screen to keep the user informed of

prior choices. Once the category is selected, the template

for the selected category of definition is aisplayed and the

user can begin to edit the definition.

b.) UPDATE. Shoulo tne update option be

selected, tne user will ce queried for the name of the file

to update. If the file is found and if it is in the correct

format for the editor it will be loaued and displayed on the

screen prepared for the user to edit as desired. If the

file is not found or is in the wrong format for the editor,

or some other problem prevents it from being read by the

program, the user will oe notified and control will oe

returned to the top level menu.

Editin Data Definitions

Actual editing a data definition is a form filling

exercise that requires the user to type data in the

designated locations. The editor commands availaole are

descrioed below and listed in Figure B-1. This same list of

commands is available on-line by pressing the HELP key while

in tne actual editor.

Text Input. Characters are placed in the definition at

the cursor position as they are pressed on the keyboard.

Illegal characters are signaled by a "beep" from the

6-2

...-



machine, no action-takes place on the screen. lne text as

it appears on the screen is exactly what 4ill oe stored in

te definition file.

Sursor Movements. The cursor can be moved by pressing

the 4 arrow keys, RETURN1, or BACK SPACE. Scrolling the text

up or down 16 lines is provided by pressing appropriate

control characters or function keys. Movement to the top

and bottom of the definition is also providea. the cursor

is restricted from moving into unauthorized areas (areas in

normal video).

Insert and Delete Lines. The editor provides the

facility to insert and delete lines for those attributes of

a data definition indicated as having multiple lines or

entries in the Software Development Documentation Guidelines

and Standards. 'Descriptions" of processes or parameters,

for exatple, can contain an unlimited number of lines of

text. Additional lines can be inserted by pressing the IiS

LINE key (unshifted). The DEL LINE key (snifted) will

delete the line the cursor is on if it was created by tne

insert command (the basic layout of' tne definition template

cannot be altered).

Some entries in a data dictionary definition contain a

group of lines (2, 3, or 4) such as the "reference" or

"alias" group in the definition of a design parameter. This

"group" is considered one entry. An additionai "group" can

be inserted by placing the cursor on tne bottom .ost line of



the wroup ano pressing the I.S LINE key (unsniftea). A

2.'-- crplete grcup of lines -ill be inserted i.Tnediately below

tiae carsor position. These groups can be deletes by placing

the cursor at the top most line of the group ana pressing

the DEL LINE key (shifted).

Exiting the Editor. EXITing the editor session

signifies a desire to save the definition to a file.

dIring the editor session signifies a desire to not save

tne definition. 3otft commands are available by pressing the

appropriate control or function keys (see Figure B-1). If

the SAVE command is chosen you will be presented a menu with

3 options as to how you desire to save the file. These

three options include overwriting the existing file,

creating a backup copy of the existing file and saving the

new version under the original name, and defining a new file

name for the definition. The QUIT command will return you

to the top level menu inside the tool. (*A Note: Dataoase

requirements dictate that all definitions must have a

non-empty entry for the PROJECT and UAIE fields. You will

IOT be permitted to save a file if either of tnese entries

in your definitions are empty).

.'. . . .



Key Control Key Action

FO or f exits editor -- with save
F1 or ^q quits editor -- no save
F3 or t moves cursor to top of buffer
F4 or b moves cursor to bottom of buffer
F6 or c pages screen down 16 lines
F7 or r pages screen up 16 lines

HOME moves cursor to top left corner
of screen

(arrow keys) moves cursor 1 position in
direction of arrow.

BACK SPACE moves cursor 1 position left
RETURN moves cursor to next available

input field
INS LINE inserts line (or group of lines)

below cursor
(multiple lines only)

DEL LINE deletes line (or group of lines)
at cursor
(multiple lines only)

HELP presents this screen

Figure B-I. Available Editor Commands.

I-t

B 5

S.);.. B-



Appendix C

Evaluation Questionnaire

Evaluation of the Human-Computer Interface
of the Data Dictionary System

The following questionnaire is designed to provide
feedback on the human-computer interface of the Data
Dictionary system developed for the design phase of tne
software lifecycle. Through your responses, I hope to

*. measure your degree of satisfaction with the system, with
primary emphasis on the "user-friendliness" of the
human-computer interface on the microcomputer workstation.

The questionnaire consists of a list of 12 factors. I
hope to obtain your reactions and attitudes based on your
response to six possible adjective pairs used to describe
each factor. Each adjective pair has a seven interval
range where you are indicate your feelings. Responses
placed in the center of the range will indicate that you
have no strong feelings one way or the other, or that you
cannot effectively evaluate the given factor.

I would appreciate any specific comments that you
would care to make about any of the factors or the system in
g-neral.

Start Time _

1. System Feedback or Content of the Information Displayed.
The extent to which the system kept you informed about what
was going on in the program.

insufficient sufficient

unclear clear

useless useful

bad good

unsatisfactory satisfactory

To me this factor is
unimportant ,_ important

Comments:

C 1

*'.-' C -i' - ' ' -'" """"" .'. .,. :"""' "'.''""""""" "" " "."""-'.'"""" . "-" : . "- . .



., .

2. Communication. The metnods used to communicate with the
tool.

complex simple

weak powerful

bad, good

useless , , useful

unsatisfactory satisfactory

To me this factor is
unimportant _, ... ... important

Comments:

3. Error Prevention. Your perception of how well the

system prevented user induced errors.

bad good

insufficient sufficient

incomplete complete

low , , , . , high

unsatisfactory satisfactory

To me this factor is
unimportant important

Comments:

C -



4. Error Recovery. The extent and ease with which the

system allowed you to recover from user induced errors.

unforgiving forgiving

incomplete comple

complex imple

slow, fast

unsatisfactory satisfactory

To me this factor is
unimportant important

Comments:

5. Documentation. Your overall perception as to the

usefulness of documentation.

useless useful

incomplete, complete

hazy, clear

insufficient _ _ sufficient

unsatisfactory satisfactory

To me this factor is
unimportant , , important

Comments:

S.o

4.I



b. Expectations. Your perception as to the services
provided by the systemU oased on your expectations.

displeased pleased

low nigh

uncertain , , definite

pessimistic Opt _ _ optiistiC

unsatisfactory , , : :satisfactory
To me this factor is

unimportant important

Comments:

7. Confidence in the System. Your feelings of assurance or

certainty about the services provided by the system.

low high

weak strong
I II I I

uncertain : _ , , I , definite

bad good

unsatisfactory : _:satisfactory

To me this factor is
unimportant , : important

Comments:

C -4



8. Ease of Learning. Ease with which you were able to
learn now to use the system to generate data dictionary
definitions.

difficult easy

confusing _, clear

complex_ simple

slow ' fast

unsatisfactory __ satisfactory

To me this factor is
unimportant important

Comments:

9. Display of Information. The manner in which both
program control and data dictionary information was
displayed on the screen.

confusing _ _ clear

cluttered , well defined

incomplete complete

complex simple

unsatisfactory satisfactory

To me this factor is
unimportant important

Comments:

C

.1
" • J ° "•" . . " • ° " " ," • •' " ",

•
' " " -- -A " -°-'9 % " ,% " . " "% I" .- , - • °" "%



10. Feeling of Control. Your ability to direct or control
the activities performed by data dictionary editor.

low high

insufficient ,, sufficient

vague precise

weak strong

unsatisfactory ,, satisfactory

To me this factor is
unimportant important

Comments:

11. Relevancy or System Usefulness. Your perception of how
useful the system is as an aid to a software developer.

useless :useful

inadequate adequate

hazy clear

insufficient sufficient

unsatisfactory satisfactory

To me this factor is
unimportant , important

Comments:

C -..

. . .. . . . . . . . . . . . . . . . . . • . ...C -. ..b:



12. Overall Evaluation of tne System. Your overall
satisfaction with tne system.

unsatisfied satisfied

Comments on the Overall System:

~ Finish Time :

Total Time Required for Evaluation =

Thanks for your help!

C-7

.I € . " ' . " ., ' " . ; . " . - . . -"- .- '. '- . . - . .-. . .- . . . .. - . % - ° '



i

_ _ _ _ _ _ A_ endix D

Data Dictionary Editor Evaluation Handout

1. You have been asked to evaluate the software interface

developed for the Data Dictionary System on the Zenith Z-100

microcomputer. Your feelings, perceptions, and comments are

solicited on the survey form provided with this handout.

2. You will be provided with 2 computers (room 242), all

necessary software (already on the machine), a set of sample

data to input into the system (ref. Software Development

Documentation Guidelines and Stanaards, pp. 26-31), a brief

user's manual on how to execute the program, and a survey

form containing 12 items to evaluate.

3. It is not necessary that you understand all of the

specifics of what the input data means. Your evaluation

should be based solely on the human interface aspects of the

tool.

4. Sequence of Steps to Follow:

a.) Begin your evaluation by CREATing (entering) the

data dictionary definition provide for you. Enter the

information EXACTLY as indicated. Press the HELP key to see

all available editing commands.

b.) Save tne complete definition to a file using the

SAVE facility tnat the tool provides.

D-I

V



. ) UPDATE this definition making any changes y-u

de s r e.

d.) Execute all options available in the preliminary set

of menus (phases other than the design ohase will De stuos).

Exit the tool and verify that your files were saved as

expected. Reenter the tool as necessary to complete you

evaluation.

e.) Exit the tool when you feel that you have

satisfactorily evaluated the interface.

5. Based on your experiences with the tool, enter your

responses on the survey. Please answer all questions to the

best of your ability. The results of the survey are

analyzed statistically and numerous blank responses may

Ci reduce the accuracy of the evaluation.

•" 6. Make a printout of one of your files that you created or

updated and turn it in with your survey. The format of file

will be analyzed and WILL NOT be in a form readable by you.

D°.

.-. '.-.-.y. ~D - 2 -*



Appendix E

Editor SADT Diagrams

This appendix contains the SADT diagrams for the data

dictionary editor. A node index is included for the set of

diagrazis and a text description accompanies each diagram

. E-1



. . . .°- ' . . ,. . -..- -. ° ,--• . ° . ° .-- - - - . .

ti

Node Index

CI Data Dictionary Editor
C2 0 Provide Data Dictionary Editor

I Perform System Configuration
C3 2 Provide Editor

2.1 Initialize Editor
2.2 Provide Menu

C4 2.3 Create :ew Definition
2.3.1 Determine Phase

2.3.2 Determine Category
2.3.3 Load Edit Template

05 2.4 Update Old Definition
2.4.1 Determine File to Update
2.4.2 Load File Into Buffer
2.4.3 Determine Phase
2.4.4 Determine Category

2.5 Exit System
2.6 Process Errors

C6 2.7 Edit Definition
2.7.1 Get Keyboard Input
2.7.2 Evaluate ESC Codes
2.7.3 Convert ESC Codes to CTIRL

Codes
2.7.4 Perform Cofwmmand

E 2

I



Abstract: Tnis diagramn shows the overall requirement of the
-aa diina ry e dIt or.

J Provide Data Dictionary Editor uses the system and
environnmentai inputs to determine the required
ohiaracteristic files to configure the system software.
01 s,,te.:i/E nvironrrientLal inputs include tne type of computer and
terminal oeing used for the system. The editor is
corfi-7red and data Jictionary definitions are produced.

P '-K



*.r

z

4c w

C-

0

0
ww

)0-

LL w

00

uH

4c-



7

0 Provide Data Dictionary Editor

Abstract: Provide Data Dictionary Editor uses the system
and environmental inputs to determine the required
characteristic files to configure the system software.
System/Environmental inputs include the type of computer and
terminal being used for the system. The editor is
configured and data dictionary definitions are produced.

1 Perform System Configuration configures the software
to operate based on the hardware descriptions provided.

2 Provide Editor accepts the the configured system and
provides an editing environment to produce data dictionary
definitions.

... ...

E -*.5 -.



060

I---

0 L1-Lai

-C I.- at4

at. 0
0 &L I-

LL W
w

z -

w
IX

_ _ _ __



2 Provide Editor

Abstract: Provide Editor accepts the the configured system
and provides an editing environment to produce data
dictionary definitions.

2.1 Initialize Editor draws the initial screens and
obtains basic administrative information from the user (sucn
as the date).

2.2 Provide Menu presents the opening menu and obtains
the user's desires for the system.

2.3 Create New Definition obtains, from the user, the
information required to determine the correct data
definition template to load into the buffer.

2.4 Update Old Definition loads the existing file, as

designated by the user, into the buffer.

2.5 Exit System enables the user to exit tne system.

2.6 Process Errors performs the necessary actions to
correct errors, if possible, and provide error information
to the user as required. The errors that reach this level
are errors that cannot be handled at lower levels.

2.7 Edit Definition provides the editing environment
for the user to edit the information inside the buffer.

E -7



I*cup C 0Q

Cuj

zx w
Lai L0

a. I
w

1.3j

ww

* ml

0S.
4- I

w IW

ww
L n

*~ I.-

CDM

AE C

or w

I- >
lp 0

Hr

0 0

LL. w
C-J

I C F- ; -jI--

ww
C:) 0ix 0

i.

% of %~.? * * *04*~~



2.3 Create Aew Definition

Aostract: Create New Definition obtains, from the user,

the information required to determine the correct cata
iefinition template to load into the buffer.

2.3.1 Determiine Phase ootains the phase of the
software lifecycle from the user.

2.3.2 Determine Category Obtains the category of
definition, within the particular phase identified
previously, from the user (such as process or paraireter for
the design phase structure chart).

123.3 Load Edit Template loads the proper definition
template into the buffer.

E--



* Lai

* W ,aL

CLL

z

I-

K

x L-J

at 0
L, W .

4tw

OwJ 0 z

L.OD w
I0

w
W CL w

I w

th w
X

I
ul, 0.4

0 AJ

I.--

q
4.1

CL

10



2.4 Update Old Definition

Abstract: Update Old Definition loads the existing file,
as designated by the user, into the buffer.

2.4.1 Determine File to Update obtains the name of the
file from the user.

2.4.2 Load File into Buffer loads the file designated
by the user into the buffer.

2.4.3 Determine Phase obtains the phase of the
software lifecycle from the buffer after the definition is
loaded.

2.4.4 Determine Category obtains the category of the
definition, within the phase of the lifecycle, from the
buffer after the definition is loaded.

.1

al.. "-'

"."' E - 1

..- °.'- .. _..,. :-. ., ., _, , , • .. . ... ,...... .... •.... .. . ....-..... ... , . ..-.... . -°



LdJ
Vs

LI&8

w fu
I'-

IL. I-

0 w
w z

C3 w
At '- 0
w AC , 4

CD w

00 -J

i~"a

0- >

L- , -.
C-C

10

CL z

E -12



I
2 .7 Edit Definition

Abstract: Edit Definition provides the editing environment
, for the user to edit the information inside the buffer.

2.7.1 Get Keyboard Input reads the keyboard for input
by the user. Valid characters are distinguisned from ESCAPE
code and each are sent to different places for processing.

2.7.2 Evaluate ESC Codes analyzes ESCAPE codes as they
are entered at the keyboard. Valid codes are processed
wnile invalid codes are flaggea returning control oaeK to
the keyboard for next input.

2.7.3 Convert ESC Codes to CTRL Codes converts va1i I
ESCAPE codes to CONTROL codes. CONTROL codes can be
rpresented by single ascii codes where ESCAPE codes require
more than one ascii code.

2.7.4 Perform Command performs tne command as "efinel
by the characters or codes received. Examples of comrns
would include display the character pressed at the Ktyar:,
insert/delete lines of text, page the screen up or r.

: E - 13K
k



*~F - zp

U 03- w r

> I- ca 00 c

Q x c ct

wAz E cta

36 
1-

0 a

*1* IC f e
0. Q

4.)

w rw
in tn

0 WL

o,

C.) 0x OL

Oww
*' I.-

CD z

a.-> L,
z

waI

C0  Lu

.0 -

-0 0 L
ZLL 

0

000z

E 1



: 2" Appenaix F

Design Structure Charts for tne Editor

This appendix contains the Design 3tructure Cinarts for

the data dictionary editor.

4F

U-.

4"

~.

,'.

.

.



00

0 z

tn 05.4

0.9

Ix-

'4

00

I-

LA -I.-z

0~ 03

C3

:3-

0.9-



fu

0 I-

Ow(f
ui Ln

wr

I-

CCn

j to
cr Q (A

ul -
Ir I

w 0

w w
LL. a..

0

00

Z 41

C:-3



Euj
U.co

Laa
-AJ

Laa

LiLai

ww

C Lii

L.1.

0 LU

9Li

Li CU

iOw L&i~

.W W

0i CiA C-)

CD c.

w -

I.-> Lai CKw
00

u~ Cu
wi0



a. w4

0

z

ata

C w -C

Ix M.

(U 0

cru

wA (U A

0 Lai 0 ~Ow 1.- 3. a

0

0
*C



~ru

a-

t- w
x
Lai

z

Q

wL
Oww

w .w

0 L

w -i

I.- us

0. ix

IL A
LiWU

0 14

0 0 w
w mu

u

lzz
*L >~ -

0 4..'z

* F.6

CLI



LI

ai

Li.n
LLai W

IA- 0- L&& L& :)

oww
.~ .-

- L-

cr
w z Lw

w 0 C

W- w Llz f

LL~hJ 9-

0 I ~LL
- w

ww

4c WF-8

..............



0: I

I i,

ui z

0 w 0 r0 a. Z

zz
CD 0

0.0

4c /
0. L

ww

*c L&z

Ow 0 & fu
w I- ct

WO j

IX UW a
l lw C00

CL cu



Appendix G

Summary Paper

Introduction

The Department of Electrical and Computer Engineering

at the Air Force Institute of Technology (AFIT) sponsors a

large amount of research in the area of software

development. In conjunction with this research, the

department has established documentation standards that

include data dictionaries to support the requirements,

design, and coding phases of the software lifecycle (37).

Originally these data dictionaries were created and managed

by hand. As the dictionaries grew in size, the effective

control and management of their contents became increasingly

difficult (16). Several efforts at AFIT led to the

development of a limited data dictionary system implemented

on a Vax-11/780 computer under the Unix operating system,

and using the Berkeley version of the relational database

management system INGRES.

The overall objective of this research was to expand

and enhance the current data dictionary system to support a

distributed development environment. The distributed

environment is required to support the capability to

generate and update data dictionary definitions at the

workstation and transmit these definitions between the

Go1

G- I



WORKCSTATION

LOCAL G-3AL



central computer.

the target user group consists of graduate students at

AFIT pursuing a curriculum in electrical or computer

engineering. All users will have some experience with

computers and will be familiar with the requirements

document for data dictionary information. Users will be

familiar with the Unix Vax-11/780 (SSC) computer and will

most likely have some experience with the use of

microcomputers.

Software development documentation standards at AFIT

* follow the software lifecycle phases consisting of the

requirements analysis phase, the preliminary and detailed

design phases, and the implementation phase. Graphical

* -representations often used to support the documentation

requirements include Structured Analysis Design Technique

(SADT) diagrams (SADT is a registered trademark of SofTec)

for the requirements analysis phase, and Structure Charts

(SC) and Data Flow Diagrams for the design phase. Data

dictionaries often accompany these representations in

addition to accompaning the actual code (36). The contents

of data dictionary definitions for the phases of the

lifecycle stated above are detailed in the Department of

Electrical and Computer Engineering Software Development

Documentation Guidelines and Standards (37). Sample

definitions are shown in Figures G-2 and G-3 for a structure

chart process and parameter in the design phase. This is the

G

."' ' <-.. .'.+ 'F + + ""• ...++,+- , . . +. +. ., + .- .+,. +- +...-+ .. . .



PRNAME: Process Message
PROJECT: NETOS-ISO
NUMBER: 4.0.1
DESCRIPTION: Process a NETOS message.
INPUT DATA: msgptr
INPUT FLAGS: none
OUTPUT DATA: none
OUTPUT FLAGS: error2
ALIASES: PROCMSG
CALLING PROCESSES: Process Messages and Data
PROCESSES CALLED: Decompose Message

Process Network 4 Messages
Determine Channel Number
Build Queue Buffer for Oty I
Put Buffer in Queue
Level 4 Cleanup

ALGORITHM:
Decompose message.
If network message

Process Network 4 Messages
else

Determine channel number
Build queue buffer
Put buffer in queue

Cleanup Level 4.

REFERENCE: PROCESS SPOOLER MESSAGE
REFERENCE TYPE: SADT

REFERENCE: Smith's Algorithm, p. 23-24
REFERENCE TYPE: text

VERSION: 1.1
VERSION CHANGES: Added module 'Level 4 Cleanup"
DATE: 11/25/85
AUTHOR: J. W. Foley

Figure G-2. Data Dictionary Format for Structure

Chart-Process (37:27).

G-

%-
P A,



PANAME: messparts
PROJECT: NETOS-ISO
DESCRIPTION: Decompose parameters.
DATA TYPE: Composite
MIN VALUE: none
MAX VALUE: none
RANGE: none
VALUES: none
PART OF: none
COMPOSED OF: SRC

DST
SPN
DPN
USE
OTY
Buffer

ALIAS: Message Parts
WHERE USED: Passed from Decompose Message to Val Parts
COMMENT: Part of earlier design

REFERENCES: SADT - MSG-PARTS
REFERENCE TYPE; SADT

VERSION: 1.2

DATE: 11/05/85
AUTHOR: J. W. Foley
VERSION COMMENT: USE added to allow network msgs.

CALLING PROCESS: Process Message
PROCESS CALLED: Decompose Message(partslist)
DIRECTION: up
I/O PARAMETER NAME: parts_list

Figure G-3. Data Dictionary Format for Structure
Chart-Parameter (37:29-30).

data that is represented in the relational database. The

third normal form relations shown in Figures G-4 and G-5

were designed to support the operational data requirements

of the design phase of the lifecycle.

-.6

I



process:
*project cl2 - Project name

-prname c25 - Process name

number c20 - Process number

prdesc:
.project c12

-prname c25

* line i2 - Description line number

description c60 - Description text

pralg:
*project c12

•prname c25
*line i2 - Algorithm line number

algorithm c60 - Algorithm text

processio:
*project c12
•prname c25
*paname c25 - Name of i/o parameter

direction c4 - Input "in"/output "out"

ptype c4 - "data" or "flag'

prcall:
*project c12
*prcalling c25 - Calling process name

*prcalled c25 - Process called name

prreference:
*project c12
-prname c25
*reference c60 - Reference description

reftype c25 - Reference type

pralias:
*project c12
-prname c25

-aliasname c25 - Name of alias for prname

comment c60 - Why alias is needed

prhistory:
*project c12
*prname c25

*version clO - Version number of this entry

date c8 - Date of this entry

author c20 - Author of this entry

comment c60 - Changes from last version

Figure G-4. Third Normal Form Relations for a

Design Structure Chart Process.

.



4P

ft/ parameter:
'project c12 - Project name
*paname c25 - Parameter name
datatype c25 - Language independent data type
low c15 - Lowest value allowed, if any
high c15 - Highest value allowed, if any
span c60 - Range of allowed values, if any

padesc:
'project c12

*paname c25
'line 12
description c60 - Parameter description

pavalueset:
'project c12
'paname c25
'value c15 - An allowable value for paname

pahierarchy:
'project c12
'hipaname c25 - Name of composite parameter
'lopaname c25 - Name of component parameter

paref:
'project c12
'paname c25
'reference c60 - Reference description
reftype c25 - Reference type

paalias:
*project c12
'paname c25
'aliasname c25 - Name of alias for paname
comment c60 - Why this alias is needed
whereused c25 - Process name where found

pahistory:

'project c12
'paname c25
'version cIO
date c8
author c20
comment c60 - Changes from last version

papassed:
'project c12
'paname c25
'prcalling c25 - Calling process name
'prcalled c25 - Called process name
direction c4 Direction "up" or "down"
iopaname c25 - Name of i/o parameter

Figure G-5. Third Normal Form Relations for a
Design Structure Chart Parameter.

%r - 8

o



System Design

Data Dictionary Editor Design. The Zenith Z-100

microcomputer was chosen as the prototype workstation for

the implementation of the data dictionary editor for two

reasons. First, it supported the standard 16-bit operating

system in use today by microcomputers (MS-DOS). Second,

there are a large number of Z-100 computers available for

student use in the academic areas.

The "CF? programming language was the language chosen

for this editor. This was because the Berkeley version of

the database management system INGRES, used on the

mainframe, only supports "C" in accessing the database

through its embedded query language, and the fact that "C"

was supported by the majority of the other computers

Wavailable in the labs, facilitating the portaoility of the

code.

User-Machine Interface. The user-machine

interface dialogue consists of a screen-oriented combination

of menu-selection and form-filling displays. Menu-selection

is used in the initial stages of the tool while form-filling

dominates the editing session of' the tool. The initial

stages in the execution of the editor require the user to

identify his (or her) desires of the tool. The initial menu

is shown in Figure G-6. Definitions can be created from

scratch or updated from an existing file.

The form-filling methoo was chosen as the primary

" .-- A -



7 . -7 T: r, 77 . ~~~ -~ W*.-

~?

PLACE CURSOR IN BOX, PRESS (RETURN>

1 ] CREATE NEU DEFINITION

[ 3 UPDATE EXISTING DEFINITION

C 3 EXIT PROGRAM

Figure G-6. Opening Menu on the Editor.

method for display and input in the editing portion of the

tool. Predefined, formatted structures, called templates,

are used as tne basic form. There were three reasons for

this choice. First, the nature of the data dictionary

definition lent itself very well to a blank form-filling

operation, since a variety of fields exist for each

definition. Second, the form-filling methoo presentec the

G 10

* "-.'.- G -*I



MIENU $I CHOICE 'ENU $2 CHOICE MNu 33 CHOICE l ILVEI

USER YoRm AREAAEA

Figure 3-7. Sample Screen Display.

the edit session, the screen is divided into two parts, the

left one-fourth of the screen and the right three-fourths of

the screen. The left portion is reserved for field names

only (title), while the right portion of the screen is

reserved for user input (data). While editing a file, the

cursor is restricted from moving into the left portion of

- 12

V.. .!
.,. .-..-.. , *. *. *J .- *. . * -. *. . . . . . .I



- - 4 - . ..,

information on the screen in a manner that closely resembled

the format required by the department. Third, form-filling

provided a "highly disciplined mode of modification that

guaranteed the structural integrity Lof the data dictionary

definitioni" (40:102). Because movement of the cursor into

unauthorized areas is prohibited, movement between fields is

easily accomplished and input error checking capability is

enhanced.

The actual display of information on the screen plays

an important role in the design of user-friendly interfaces

(1, 10, 18, 27). The screen display shown in Figure G-7 was

designed for this tool. All menus are displayed

consistently throughout the tool with regard to their

location on the screen, appearance, and method of choice

selection.

The top line of information provides the user with the

location within the nierarchical structure of the program,

and remains on the screen throughout the use of the tool.

The results of each menu selection are provided in this line

as the user traverses through the tool. This facility

eliminates the requirement for the user to memorize this

information.

The remainder of the screen displays the menus.

General editing takes place in this area as well. While in

.. G - 11

4le



the screen. All input areas are highlighted in reverse

video, clearly indicating the maximum length of each entry.

The restrictions on the movement of the cursor (outside of

any reverse video block) reduce the potential for error.

These restrictions are designed to permit the user to

concentrate on what information goes into each biock rather

than the mechanics involved in getting to the proper

location on the screen.

The information displayed on the screen is exactly what

is stored in the data file. This system is commonly known

as "what you see is what you get." This provides immediate

feedback to the user that the tool is doing useful work.

This contributes to providing the user with the

psychological closure that is important in the design of any

user-friendly system (27).

It should be apparent that no data dictionary

definition is going to fit on the screen in its entirety. A

system had to be developed that would control what portion

(or window) of the definition buffer would be displayed on

the screen and how windows of information could be moved on

and off the screen. This is a basic requirement of

screen-oriented editors.

The system designed and implemented in this tool

involves a "windowing scheme" (see Figure G-6). Global

pointers are defined to keep track of the top of the buffer

(topbuffer), the bottom of the buffer (botbuffer), the top

Ge 1

...-,1

•* "o . . , o . ° ° o . . . . . - ° o o . . , , o . , , , . - - - o - °



TOPSUFFER

NAMqE

PROJECT

TOPVINOOW NUMBER

-----------------------------

I DESCRIPTIOh &

asa

I INPUT DATA

I INPUT FLAG

OUTPUT DATA
I OUTPUT FLAG

I ALIASES a
COI'IIENT

CALLING PROCESSES

I PROCESSES CALLED

DOTUINOOUtI (CO" )

(CO"?)

0

0

DATE

AUTHOR

BOTBUFFER

Figure G-8. Screen Editor "Windowing Scheme".

% 14.- *".. ' u - 1~4
CU

%.

U.....-- " o. ...''.U"**.-v "../.*-"...".:*," "' ..- ,' , " ".."....- . . . .,. .-.... ."". .- ".. . ."".". ."." " "" - "- "" -""-.

".. .m'.,--. J,- " ', %] " ."-%--'-- -% -,'. ',,% .% % '. ', % %', " ,' ,"," U- . U4"



of the window (topwindow), and the bottom of the window

(botwindow). Topbuffer points to the very first structure

in the linked list, while botbuffer points to tne very last

structure in the linked list. These two pointers generally

do not move once initially established, unless the structure

to which either points to can be added onto or deleted. The

topwindow and botwindow pointers, on the other hand, move

about the buffer frequently always remaining 21 items apart

(the size of available screen space for this editor is 21

lines). Initially, when entering the editor, the topwindow

is set to topbuffer and the top 21 items in the buffer are

displayed. As the user attempt3 to move the cursor down off

the bottom of the screen, the topwindow and botwindow

pointers are adjusted accordingly and the new window is

presented on the screen. The window pointers will change

frequently during an average editing session with the

obvious restrictions of the topwindow pointer never

"passing" the topbuffer pointer and likewise with the

botwindow and botbuffer pointers.

Ideally, the method for handling data files used by the

tool is to hide the implementation details from the user

completely. The user would be required to know only the

names of the processes or parameters, witn all file I/O

being based on this information. The current implementation

requires the user to define filenames and keep track of them

as necessary. Several standard options were provided for

S- 15

i
7



storing files, for example overwriting the existing file, or

creating a backup version of the old file. Although not

ideal, this method of file handling does provide a working

system that appears clean and simple to use, yet is flexiole

and powerful enough to provide most desiraole alternatives

for the user.

The commands available to a user while using the editor

clearly have a major impact on the usefulness of the tool.

"Concern for human engineering dominates the design"

(19:163). The minimum set of commands that will provide a

working system include "insert" characters, "delete"

characters, and "save" the text at the completion of the

edit session.

The capability of moving the cursor freely to any

portion of the input area is important. The user must have

this capability to view or modify any portion of the file at

any time during the session. Cursor movements by character,

line, or screen-at-a-time were considered essential for the

editor to be of valuable use.

Line insertion and deletion were required to support

the various entries that contained multiple lines of data.

Standard termination commands are included to provide

for quitting the editing session (without saving the file)

and exiting the session (saving the file).

On-line help facilities were considered essential to

give users immediate access to all available editor

G - 16

I _



commands.

Error handling is provided at the lowest possible level

in the coae. Illegal strings of characters for fiienames and

dates are identified upon their entry. Illegal characters

from the keyboard are suppressed at the time the key is

pressed. Other errors that are checked by the tool are

those that relate to the definition requirements and not the

actual codes from the keyboard, for example verifying that

key fields (required by the database system) are non-empty.

The form-filling construct of the editor itself

prevented a number of otherwise common errors from

occurring, for example entering characters in the wrong

location or typing characters beyond the length of the

field. Input fields were clearly identified and cursor

movement is limited to only input areas. This was one of

the major reasons that the form-filling format was the

method of choice for this editor.

Database Interface Design. The interface software

currently supports the design phase database (for structure

charts). As the other databases are designed, extension of

the interface software to support them should be

straightforward.

The database interface software was designed to

translate a text file containing a data dictionary

definition, generated by the workstation editor, into the

database and vice-versa. Currently, the database interface

G - 17



software provides operations on single files (data

dictionary definitions) only.

Implementation Issues

Some costs were associated with the efforts to keep the

code portable to other computers. Designing the code for a

24 line by 80 column screen eliminated the option to employ

the 25th line available on the Z-100 terminal. This line

is not affected by line insertion and deletion or any other

scrolling operations. Because this line was deemed not

available, redrawing the screen was necessary when attempts

were made to move the cursor beyond the top or bottom of the

screen. Paging commands that scrolled up and down 16 lines

in the buffer and quick movements to the top and bottom of

the buffer were provided to minimize the need for redrawing

the screen.

The configuration of the buffer structure used in the

editor code provides a facility to handle a variety of data

dictionary definitions. Any number of different templates

can be created and used with this editor with a minimum

number of restrictions. This was demonstrated as templates

for the code phase definitions were integrated into the

system after the original code was completed using the

design phase templates only.

Measuring User Satisfaction

Measuring a user's satisfaction with any degree of

G 8
"." G - 10 '

p.

. .. o • • . . . . . . . . . . . .. . . . . . . . . . . . ."



statistical proof of validity has proven difficult. Bailey

and Pearson (1983) performed extensive research on the

subject of measuring user satisfaction with information

systems (2). A formula for defining user satisfaction as

"the sum of the user's weighted reactions to a set of

factors" (3:531),

was developed by Bailey and t-e& .son. In it, R is the

reaction to factor j bj individual i, and W is the

importance of factor j to individual i. This equation

suggests that one's opinion of satisfaction is the sum of

his or her positive and negative reactions to a particular

set of factors.

To measure a user's perceptions of these factors,

Bailey and Pearson used the semantic differential technique

lif (3:533). Four bipolar adjective pairs ranging from negative

to positive feelings were identified for each factor.

Additional scales were included to test the internal

consistency and validity of the four pairs, and to obtain a

value for the weights users assigned to each factor. A

seven-interval scale was adopted to measure the user's

satisfaction with each pair. Figure G-9 shows a sample

question (or factor) that was taken from the actual

questionnaire.

- 19



Error Recovery. The extent and ease with wnich
the system allowed you to recover from user induced
errors.

unforgiving forgiving

incomplete complete

complex _ simple

slow fast

unsatisfactory: satisfactory

To me this factor is
unimportant: important

Comments:

Figure G-9. Sample Survey Question.

Numerical values were assigned to each of the seven

intervals ranging from -3 to +3. The importance scale was

assigned values from 0.10 to 1.00 in increments of 0.15.

The higher the value the more important the factor. The

overall satisfaction was measured by

5L Y, , Z L j, K

where W = the weight assigned Uo factor j by user i, and I

the numeric response of user i to adjective pair k of factor

j.

The results of this equation can be deceiving if a user

rates half of the factors very high and very important while

rating the remainder neutral and very unimportant. The

G -20

% % !L.
~ ~ ~ K . -.~ ~ _ .' %. 'B~ * * -*



numerical result would be approximately one-half of t

total possible indicating a moderate degree of satisfaction

when in fact the user was extremely satisfied. Normalizing

the scores and filtering factors whose top four adjectives

pairs were all rated at 0 eliminated this problem. A

normalized score ranges from -1.00 to +1.00 with the

translation of scores shown in Figure G-10.

! Many factors identified by Bailey and Pearson did not

apply to the evaluation of the data dictionary editor and

were not included in it evaluation. Examples of tnese were

vendor support and management factors. Mallary, in a

previous thesis effort (25), added several factors to the

list that provided greater emphasis on the human-computer

interface aspect of software tools. The list was extended

by one more factor, for this evaluation, that covered the

area of error prevention.

Evaluation of the Data Dictionary Editor

A graduate level software engineering class containing

students studying computer systems or computer engineering

were targeted for the evaluation. Although they were not

knowledgable in database management systems and were

currently learning about the software development lifecycle

and data dictionaries, it was determined that they would

G 21



% °

Normalized Score Translation

+1.00 maximally satisfied
+0.67 quite satisfied
+0.33 slightly satisfied
0.0 neither satisfied or dissatisfied

-0.33 slightly dissatisfied
-0.67 quite dissatisfied
-1.00 maximally dissatisfied

Figure G-10. Score Boundaries for Normalized User

Satisfaction (3:535).

still provide valuable feedback in an evaluation of the

human-interface, or user-friendliness, aspects of the data

dictionary editor.

The class was briefed by the author on the overall data

dictionary system and the editor's place within the system.

Each student was provided with a copy of the questionnaire,

a users' manual for the editor and a se,; of instructions

outlining the steps necessary to execute the tool and obtain

a hard copy of the data definition file. Two Z-100

computers were set aside in one of the school labs for their

use.

The completed ,eys were returned one week after they

were issued. The average time to complete the evaluation

was 37 minutes. The results were analyzed with the

normalized scores for each user shown below in Figure 3-11.

G 22



''9j

User ilumber Normalized Score

19 0.977
8 0 .b 14

18 0.704
5 0 .o0
2 0.662
7 0.660

13 0.602
17 0.593
6 0 593
4 0.586
1 0.577
3 0 .546
9 0.520

15 0.517
21 0.493
1 0.478

23 0.466
12 0.430
22 0.395
16 0. 382
10 0.351
14 0.210
20 0. 140

mean for all users : 0.538

Figure G-11. Normalized Values Overall Satisfaction
by User.

The overall normalized measured satisfaction mean of

0.533 generated by the formula presented, coupled with the

user assessed satisfaction mean of 1.91 from question #12

(not shown), and the fact that there were no negative mean

scores for any single factor indicate that the data

dictionary editor was well received oy the users. Problems

with the editor were brought out, however, in the comments.

Over half of the users commented on their frustration at the

' ."G - 23

I



editor's need to redraw the screen upon attempts to move the

cursor beyond the top or bottom of the screen. Enhancements

are certainly in order to make the environment better,

particularly in correcting this deficiency.

Conclusions

A data dictionary system was designed to support the

AFIT distributed software development environment. The

system was broken down into three separate but related

subsystems; the workstation, the communications links

between computers, and the central computer.

A special data dictionary editor was designed and

implemented on a prototype microcomputer workstation. It

was designed under the constraints of being generic and

portable to other workstations. The generic objective was

achieved, as the editor demonstrated its ability to handle

code phase definitions after design phase definitions were

used for the original implementation and testing of the

software.

Twenty-thcee users evaluated the user-friendliness of

the editor and were satisfied with its implementation. This

level of satisfaction was based on a normalized mean score

of 0.538 on a scale of -1.0 to +1.0 where the higher the

score the more satisfied the user was with the system. The

new interface is believed to be a major improvement based on

the enhanced features, such as screen oriented editing and

error checking. Editing time should be reduced with

G -24



*" _: _l?>. accracy. Data definitions templates for

' :2r: proects can be created by the user to provide an

re efficient system.

.-. e communication links of the system were not

.recse in detail, because communication software was

alreaay available for use and did provide all the

requiremnents for this first implementation of the system.

'he database interface software was designed and

implemented on the Vax-11/780 coinputer under the Unix

operating system. The Berkeley version of the INGRES

database management system was the host database for the

data dictionary definitions.

.2

- 2

,a-~a



t- L V I -.

Bibliography

1. Allen, Craig M. and William A. Ahroon. "Data Entry
Displays," IEEE Phoenix Conference on Computers
and Communication. 547-551, 1983.

2. Aztec C User's Manual. Manx Software Systems. Inc.,
Schrewsbury, NJ (1984).

3. Bailey, J. E. and Sammy W. Pearson. "Development of a
Tool for Measuring and Analyzing Computer User Satis-
faction, " Management Science, 29: 530-544 (May 1983).

4. Boehm, Barry. "The High Cost of Software," Practical
Strategies for Developing Large Software Systems. Ed.

Ellis Horowitz, Reading, Mass: Addison-Wesley, 1975.

5. Choy, David M., Roger J. Bamford, and Frank C. Tung,
"A Database Management System for Office Systems and
Advanced Workstations," ACM SIGOA Newsletter, 5: 17-18
(Fall 1984).

6. Crenshaw, Jack W. "Towards a 'Friendly' Environment,"
IEEE Phoenix Conference on Computers and Communication
527-53T,763.

7. Date, C. J., An Introduction to Database Systems.
(Third EditionT Massachusetts: Addison-Wesley

Publishing Company, 1982.

8.-------, C. J. "Database Usability," Proceedings of
Annual Meeting - ACM SIGMOD, 13: 1 (May 1983).

9. Davis, Richard M. Thesis Projects in Science and
Engineering, St. Martins: New York, 1980.

10. Department of the Army. Human Engineering Guidelines
for Management Information Systems. Alexandria,
Virginia: HQ US Army Material Development and
Readiness Command, 9 June 1983.

11. Epstein, Robert. "Creating and Maintaining a Database

Using INGRES,"1 Memorandum No. ERL M77-71, Electronics
Research Laboratory, College of Engineering, University

of California, Berkeley (December 1977).

12. ------- "A Tutorial On INGRES," Memorancum No. ERL
M77-25, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley
(December 1977).

BIB - 1

" -"' '. -' .'. ' o '-° - ' -" ."" "' '- ' " -'" :' 2'",' , 'f
, ' ,

,' ' ".', . " ' . , . -' -t ' - ' .', -' ', - -' ' " -



,V 13. Frankosky, Richard J. "Software Interface Ease of Use:
Metrics and Methods," IEEE Phoenix Conference on
Computers and Communication. 534-537. IEEE Press,
New York, --9-3.

14. Hansen, Wilfred J. "User Engineering Principles for
Interactive Systems", Interactive Progr'amming
Environments, edited by David R. Barstow et al.,
New York: McGraw-Hill, p. 217-231, 1984.

15. Hartrum, Thomas C. Professor of Electrical
Engineering. Lecture materials distributed in MA 71.46,
Advanced Database Manaement Systems. School of
Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, 1935.

16. Hartrum, Thomas C. and Charles W. Hamberger, Jr,
"Development of a Distributed Data Dictionary System
for Software Development," IEEE NAECON (May 1985).

17. Heathkit Manual for the Video Display Terminal Model
H-29. Heath Company, 1983.

18. Heckel, Paul. The Elements of Friendly Software
Design, Warner Books: New York, 1984.

19. Kernighan, Brian W. and P. J. Plauger. Software Tools
Addison-Wesley: Reading, MA, 1976.

20. Kernighan, Brian W. and Dennis M. Ritchie. The C
Programming Language. Prentice-Hall: Englewood
Cliffs, NJ, 1976.

21. Kockhan, Stephen G. Programming in C. Hayden:
Hasbrouck Heights, NJ, 19b3.

22. Lefkovitz, Henry C. Data Dictionary Systems,
Forward by Edgar H. Sibley. Wellisley: Q.E.D.
Information Sciences Inc., 1980.

23. Leong-Hong, Belkis W. and Bernard K Plagman. Data
Dictionary/Directory Systems Administration,
Implementation, and Usage. New York: John Wiley &
Sons, 19b2.

24. Lindquist, Timothy E. "The Application of Software
Metrics to the Human-Computer Interface," IEEE
Computer Conference-Fall. 239-244 (1963).

BIB - 2

~~i x * _



25. Iallary, Thomas C. Design of the Human-Computer
Interface for a Computer Aided Design Tool for the
Normalization of Relations. MS Thesis. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, December 1985.

26. Marcellus, Daniel H. Systems Programming for Small

Computers. Prentice-Hall: Englewood Cliffs, NJ,
1964.

27. Martin, James. Design of Man-Computer Dialogues.
Englewood Cliffs: Prentice-hall, 1973.

26. McGilton, Henry and Rachel Morgan. Introducing the
Unix System. McGraw-Hill: New York, 1963.

29. Moore, Paul A. Extension of the Software Development
Workbench to Include Microcomputer Workstations. MS
Thesis. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, December
1984.

30. Myers, Glenford J. Software Reliability Principles
and Practice. New York: Wiley, 1976.

31. Ream, Edward K. "A Portable Screen-Oriented Editor,"
Dr. Dobbs Journal, Number 63: 18-26 (January 1982).

32. Rissl'nd, Edwin L. "Ingredients of Intelligent User
Interfaces," International Journal of Man-Machine
Studies, 21: 377-388 (October 1994T.

33. Shooman, Martin L. Software Engineering. New York:
MeGraw-Hill, 1983.

34. Sisson, Norwood, et al. "Design Methodology for Menu
Structures," IEEE Phoenix Conference on Computers
and Communication. 55--56 (19"83).

35. Smith, F. J. and C. Estall. "Information Retrieval
from an Intelligent Terminal," IEEE Phoenix Conference
on Computers and Communication. 206-210 (1985).

36. Smith, John M. "Integrated Management of Multiple
Information Types," International Journal of Man-
Machine Studies, 21: 403-406 (October 1984T.

37. Software Development Documentation Guidelines and
Standards (Draft 43). Air Force Institute Of
Technology Department of Engineering, Wright-
Patterson AFB, OH, (March 1986).

,I-. - 3



38. The American Heritage Dictionary of the Enlish
1Language. Ed. William Morris, Boston: American
Heritage Publishing Co & Houghton Mifflin, 1973.

39. Thomas, Charles W. An Automated/Interactive Software
Engineering tool to Generate Data Dictionaries. MS
Thesis. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, December
1984.

40. Tieteloaum, Tim and Thomas Reps, "The Cornell Program
Synthesizer: A Syntax-Directed Programming
Environment", in Interactive Programming Environments
Ed. David R. Barstow et al, New York: McGraw-Hill,
97-116, 1984.

41. Ullman, Jeffrey D. Principles of Database Systems.
Rockville, MD: Computer Science Press, 1982.

42. Wilson, Gerald A. "Smart User Interfaces for the
Distributed Information Environment," IEEE
EASCON-83. 377-385 (1983).

43. Wood, John, et. al. INGRES Version 6.3 Reference
Manual. (2 April 1981).

44. Woffinden, Duard S. Interactive Environment for a
Computer-Aided Design System. MS Thesis, Naval
Postgraduate School, Monterey, CA, 1984. -

45. Zenith Data Systems Corporation. Technical Manual-
Hardware Z-100 Series Computers. Saint Joseph, 11I,
1983.

46. Zenith Data Systems Corporation. Z-100 Series User's
Manual. Saint Joseph, MI, 1982.

BIB - 4



.. - . R .T - - S -

VITA

Captain Jeffrey W. Foley was born on 30 Decemoer 1955

in Cincinnati, Ohio. He graduated from Mariemont High

School in 1974. He receivea an appointmaent to the United

States Military Academy in 1974 ana graduated in 1978 with

an academic area of concentration in Civil Engineering. He

was commissioned a Second Lieutenant in the Signal Corps.

Captain Foley's military schooling includes the Signal

Officer's Basic and Advanced Courses, Communications -

Electronic Staff Officer's Course, and the Teleprocessing

Operations Officer Course. His assignments include the 50tn

Signal Battalion (AbnC), Ft. Bragg, NC, as a platoon leader

and staff officer, and as a staff officer in the US Forces,

Korea, Assistant Chief of Staff J-6. He served as Company

Commander of A Company 304th Signal Battalion prior to his

assignment at the School of Engineering, Air Force Institute

of Technology in January of 1985.

Permanent address: 3800 Ashworth Dr.

Cincinnati, Ohio, 45206

VIrA - 1

_VI



SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE tf 6&~
.. I)e REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release,
Distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/EE/86J-5
6" NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

School of Engineering AFIT/ENG
6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Wright-Patterson AFB, OH 45433

ftU. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK LNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Clahsification)

See Item 19
12. PERSONAL AUTHOR(S)

* Jeffrey W. Foley, B.S., Captain, US Army
. TYPE OF REPORT 13b. TIME COVERED 1 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

MS Thesis FROM_ TO _ 1 1986, June 184
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reuerse if necesary and identify by block number)

FIELD GROUP SUBOGR. Data Dictionary, Databases, Editors,
09 02 HuFnan-Computer Interface

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

11. TITLE: DESIGN OF A DATA DICTIONARY EDITOR IN A
DISTRIBUTED SOFTWARE DEVELOPMENT ENVIRONMENT

Thesis Chairman: Dr. Thomas C. HartrumlAW AFR 1w."

la for F Icn,
7

I h and Proe.gpjal
1 )Air Force Instil, te cl 7ec.,n,,l,,y 91-,1!)~menl

Wi ghl-Patter.on AFSL a

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

• .. 'CLASSIFIED/UNLIMITED 9 SAME AS RPT. 0 DTIC USERS 0 Unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
(Include A ra Code,

L Dr. Thomas C. Hartrum (513) 255-3576 AFIT/FNG

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE

% .. '. '.'*' -, .. : ..... .&., , . . .& :. ." . • • .:.-T ." .-: .: . ,



SIECURITY CLASSIFICATION OF THIS PAGEIj.
The project involved the design and implementation of a data

dictionary system in a distributed development environment. The
distributed environment consists of a central computer that hosts a
database management system, a conglomerate of workstations, and the
communications links between the workstations and central computer.

The emphasis of the research was placed on the design of a
user-friendly data dictionary editor that was implemented on a
prototype workstation. Data dictionary definitions are created and
updated at the workstation and transfered between the workstation
and central computer database.

Background information is provided on data dictionary systems,
aspects of human-computer interfaces, and distributed environment
interface issues. The design afid development of the special editor
and the database interface software are described in detail.

Evaluation of the special editor was performed by a subset
of the target user group. This evaluation was based on a tool
designed to measure user satisfaction. The tool is described and
the results of the evaluation provided.

I 9,-

SECURITY CLASSIFICATION OF THIS PAGE

'- - # - . -.- .. ., .-.- - - -. .. .. ' , . .- .- - - . . . . , . . . . - - - - . .- -. - - . - -.-



-

* S. ,~. t

A
I

ii I

I I
I

V

I .1

ftS
'I

-'I.

I'

I


